Sains Malaysiana 46(2)(2017): 327–333
http://dx.doi.org/10.17576/jsm-2017-4602-18
Unsteady
Magnetoconvective Flow of Bionanofluid with Zero Mass Flux Boundary Condition
(Aliran
tak Mantap Magneto-Perolakan bagi Bionanobendalir dengan Keadaan
Sempadan Fluks Jisim Sifar)
MD.
FAISAL
MD.
BASIR1*, M.J.
UDDIN1,2 & A.I. MD.
ISMAIL1
1School of
Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang
Malaysia
2American
International University- Bangladesh, Banani Dhaka, 1213, Bangladesh
Received: 24 March 2015/Accepted: 9 May 2016
ABSTRACT
Induced magnetic field stagnation point flow for unsteady
two-dimensional laminar forced convection of water based nanofluid containing
microorganisms along a vertical plate has been investigated. We have
incorporated zero mass flux boundary condition to get physically realistic
results. The boundary layer equations with three independent variables are
transformed into a system of ordinary differential equations by using
appropriate similarity transformations. The derived equations are then solved
numerically by using Maple which use the fourth-fifth
order Runge-Kutta-Fehlberg algorithm to solve the system of similarity
differential equations. The effects of the governing parameters on the
dimensionless velocity, induced magnetic field, temperature, nanoparticle
volume fraction, density of motile microorganisms, skin friction coefficient,
local Nusselt number and motile density of microorganisms transfer rate are
illustrated graphically and tabular form. It is found that the controlling
parameters strongly affect the fluid flow and heat transfer characteristics. We
compare our numerical results with published results for some limiting cases
and found excellent agreement.
Keywords: Forced convection; induced magnetic field;
microorganisms; nanofluid; unsteady; zero mass flux
ABSTRAK
Medan magnet teraruh pada titik genangan untuk aliran tak mantap
lamina dua dimensi perolakan dipaksa daripada nanobendalir berasaskan air yang
mengandungi mikroorganisma bersama plat menegak telah dikaji. Kami telah memasukkan keadaan sempadan fluks jisim sifar untuk
mendapatkan keputusan yang realistik. Persamaan
lapisan sempadan dengan tiga pembolehubah diubah menjadi sistem persamaan
pembezaan biasa dengan menggunakan persamaan transformasi serupa yang sesuai. Persamaan yang telah diperoleh diselesaikan secara berangka
dengan menggunakan algorithma Runge-Kutta-Fehlberg keempat-lima dalam Maple
untuk menyelesaikan sistem persamaan pembezaan. Kesan parameter pada
halaju tak berdimensi, medan magnet teraruh, suhu, pecahan isi padu zarah-zarah
nano, ketumpatan mikroorganisma motil, pekali geseran kulit, nombor Nusselt dan
ketumpatan motil kadar pemindahan mikroorganisma adalah dipamerkan secara
grafik dan dalam bentuk jadual. Didapati bahawa parameter
kawalan mempengaruhi aliran bendalir dan ciri-ciri pemindahan haba. Kami
membandingkan keputusan berangka ini dengan keputusan yang telah diterbitkan
bagi kes terhad dan ia menepati keputusan sedia ada di
dalam kajian lepas.
Kata kunci: Keadaan
sempadan fluks jisim sifar; medan teraruh magnet;
mikroorganisma; bendalir nano; perolakan dipaksa; tak mantap
REFERENCES
Ali, F.M., Nazar, R.,
Arifin, N.M. & Pop, I. 2011. MHD mixed convection boundary layer flow toward a stagnation
point on a vertical surface with induced magnetic field. ASME Journal of
Heat Transfer 133(2): 022502.
Aziz, A., Khan, W.A. &
Pop, I. 2012. Free convection boundary
layer flow past a horizontal flat plate embedded in porous medium filled by
nanofluid containing gyrotactic microorganisms. International Journal of Thermal
Sciences 56: 48-57.
Buongiorno, J. 2006. Convective
transport in nanofluids. ASME Journal of Heat Transfer 128:
240-250.
Choi, S.U.S. 1995. Enhancing thermal
conductivity of fluids with nanoparticles. In Development and Applications
of Non-Newtonian Flows, edited by Siginer, D.A. & Wang, H.P. ASME
MD-vol. 231 and FED-vol. 66. New York: ASME. pp. 99-105.
Davies, T.V. 1963. The
magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a
semi-infinite flat plate. III. The influence of an adverse magneto-
dynamic pressure gradient. proceedings of the royal
society. A Mathematical, Physical and Engineering Sciences 273(1355):
518-537.
Geng, P. &Kuznetsov, A.V. 2005. Settling of
bidispersed small solid particles in a dilute suspension containing gyrotactic micro-organisms. International Journal of Engineering
Science 43: 992-1010.
Glauert, M.B. 1961. A study of
the magnetohydrodynamic boundary layer on a flat plate. Journal of
Fluid Mechanics 10: 276-288.
Idowu, A.S., Dada, M.S., Jimoh, A. &
Command, K.S. 2013. Heat and mass transfer of magnetohydrodynamic( mhd ) and dissipative fluid flow past a moving vertical
porous plate with variable suction. Mathematical Theory and Modeling 3(3):
80-103.
Ishak, A. 2011. MHD boundary layer flow due to an exponentially stretching sheet
with radiation effect. Sains Malaysiana 40(4): 391-395.
Kuznetsov, A.V.,
Avramenko, A.A. & Geng, P. 2004. Analytical investigation of a falling
plume caused by bioconvection of oxytactic bacteria in a fluid saturated porous
medium. International Journal of Engineering Science 42: 557-569.
Kuznetsov, A.V. & Nield, D.A. 2010. Natural
convective boundary-layer flow of a nanofluid past a vertical plate. International
Journal of Thermal Sciences 49: 243-247.
Kuznetsov, A.V. 2011. Non-oscillatory and
oscillatory nanofluid bio-thermal convection in a horizontal layer of finite
depth. European Journal of Mechanics, B/Fluids 30(2): 156-165.
Kuznetsov, A.V. & Avramenko, A.A. 2004. Effect of small particles on this stability of bioconvection in a
suspension of gyrotactic microorganisms in a layer of finite depth. International
Communications in Heat and Mass Transfer 31(1): 1-10.
Kuznetsov, A.V. & Nield, D.A. 2014. The onset of
convection in a horizontal nanofluid layer of finite depth: A revised model. International
Journal of Heat and Mass Transfer 77: 915-918.
Michael, D.H. 1954. A two dimensional magnetic boundary layer problem. Mathematika 1: 131-142.
Mutuku, W.N. & Makinde, O.D. 2014. Hydromagnetic
bioconvection of nanofluid over a permeable vertical plate due to gyrotactic
microorganisms. Computers & Fluids 95: 88-97.
Nield, D.A. & Bejan A. 2006. Convection in Porous Media. 3rd ed. New York: Springer.
Saidur, R., Leong, K.Y. & Mohammad,
H.A. 2011. A review on applications
and challenges of nanofluids. Renew Sustain Energy Review 15:
1646-1668.
Sinha, A. & Misra, J.C. 2014. Effect of induced magnetic
field on magneto hydrodynamic stagnation point flow and heat transfer on a
stretching sheet. Journal of Heat Transfer 136(11): 112701.
Kiwan, S. & Al-Nimr, M.A. 2010. Investigation into the
similarity solution for boundary layer flows in microsystems. ASME Journal
of Heat Transfer 132(4): 041011.
Takhar, H.S., Kumari, M. & Nath, G.G. 1993. Unsteady
free convection flow under the influence of a magnetic field. Archive of
Applied Mechanics 63(4-5): 313-321.
Takhar, H.S. & Nath, G. 1997. Similarity
solution of unsteady boundary layer equations with a magnetic field. Meccanica 32: 157-163.
Tham, L., Roslinda, N. & Pop, I. 2013. Mixed convection
flow over a solid sphere embedded in a porous medium filled by a nanofluid
containing gyrotactic microorganisms. International Journal of Heat and Mass
Transfer 62: 647-660.
Uddin, M.J., Pop, I. & Ismail,
A.I.M. 2012. Free convection boundary layer flow of
a nanofluid from a convectively heated vertical plate with linear momentum slip
boundary condition. Sains Malaysiana 41(11): 1475-1482.
Xu, H. & Pop, I. 2014. Fully developed mixed convection
flow in a horizontal channel filled by a nanofluid containing both
nanoparticles and gyrotactic microorganisms. European Journal of Mechanics -
B/Fluids 46: 37-45.
Yusoff, N.H.M., Uddin, M.J. & Ismail, A.I.M. 2014.
Combined similarity-numerical solutions of MHD boundary layer slip flow of non-newtonian
power-law nanofluids over a radiating moving plate. Sains Malaysiana 43(1):
151-159.
Wong, K.V. & Leon, O.D. 2010. Applications of
nanofluids: Current and future. Advances in Mechanical Engineering 2:
519659.
Zaimi, K., Ishak, A. & Pop, I. 2014. Stagnation-point
flow toward a stretching/shrinking sheet in a nanofluid containing both
nanoparticles and gyrotactic microorganisms. ASME Journal of Heat
Transfer 136(4): 041705.
*Corresponding
author; emails: faisalbasir91@gmail.com
|