Sains Malaysiana 46(2)(2017): 327–333

http://dx.doi.org/10.17576/jsm-2017-4602-18

 

Unsteady Magnetoconvective Flow of Bionanofluid with Zero Mass Flux Boundary Condition

(Aliran tak Mantap Magneto-Perolakan bagi Bionanobendalir dengan Keadaan Sempadan Fluks Jisim Sifar)

 

MD. FAISAL MD. BASIR1*, M.J. UDDIN1,2 & A.I. MD. ISMAIL1

 

1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang

Malaysia

 

2American International University- Bangladesh, Banani Dhaka, 1213, Bangladesh

 

Received: 24 March 2015/Accepted: 9 May 2016

 

ABSTRACT

Induced magnetic field stagnation point flow for unsteady two-dimensional laminar forced convection of water based nanofluid containing microorganisms along a vertical plate has been investigated. We have incorporated zero mass flux boundary condition to get physically realistic results. The boundary layer equations with three independent variables are transformed into a system of ordinary differential equations by using appropriate similarity transformations. The derived equations are then solved numerically by using Maple which use the fourth-fifth order Runge-Kutta-Fehlberg algorithm to solve the system of similarity differential equations. The effects of the governing parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction, density of motile microorganisms, skin friction coefficient, local Nusselt number and motile density of microorganisms transfer rate are illustrated graphically and tabular form. It is found that the controlling parameters strongly affect the fluid flow and heat transfer characteristics. We compare our numerical results with published results for some limiting cases and found excellent agreement.

 

Keywords: Forced convection; induced magnetic field; microorganisms; nanofluid; unsteady; zero mass flux

 

ABSTRAK

Medan magnet teraruh pada titik genangan untuk aliran tak mantap lamina dua dimensi perolakan dipaksa daripada nanobendalir berasaskan air yang mengandungi mikroorganisma bersama plat menegak telah dikaji. Kami telah memasukkan keadaan sempadan fluks jisim sifar untuk mendapatkan keputusan yang realistik. Persamaan lapisan sempadan dengan tiga pembolehubah diubah menjadi sistem persamaan pembezaan biasa dengan menggunakan persamaan transformasi serupa yang sesuai. Persamaan yang telah diperoleh diselesaikan secara berangka dengan menggunakan algorithma Runge-Kutta-Fehlberg keempat-lima dalam Maple untuk menyelesaikan sistem persamaan pembezaan. Kesan parameter pada halaju tak berdimensi, medan magnet teraruh, suhu, pecahan isi padu zarah-zarah nano, ketumpatan mikroorganisma motil, pekali geseran kulit, nombor Nusselt dan ketumpatan motil kadar pemindahan mikroorganisma adalah dipamerkan secara grafik dan dalam bentuk jadual. Didapati bahawa parameter kawalan mempengaruhi aliran bendalir dan ciri-ciri pemindahan haba. Kami membandingkan keputusan berangka ini dengan keputusan yang telah diterbitkan bagi kes terhad dan ia menepati keputusan sedia ada di dalam kajian lepas.

 

Kata kunci: Keadaan sempadan fluks jisim sifar; medan teraruh magnet; mikroorganisma; bendalir nano; perolakan dipaksa; tak mantap

 

REFERENCES

Ali, F.M., Nazar, R., Arifin, N.M. & Pop, I. 2011. MHD mixed convection boundary layer flow toward a stagnation point on a vertical surface with induced magnetic field. ASME Journal of Heat Transfer 133(2): 022502.

Aziz, A., Khan, W.A. & Pop, I. 2012. Free convection boundary layer flow past a horizontal flat plate embedded in porous medium filled by nanofluid containing gyrotactic microorganisms. International Journal of Thermal Sciences 56: 48-57.

Buongiorno, J. 2006. Convective transport in nanofluids. ASME Journal of Heat Transfer 128: 240-250.

Choi, S.U.S. 1995. Enhancing thermal conductivity of fluids with nanoparticles. In Development and Applications of Non-Newtonian Flows, edited by Siginer, D.A. & Wang, H.P. ASME MD-vol. 231 and FED-vol. 66. New York: ASME. pp. 99-105.

Davies, T.V. 1963. The magneto-hydrodynamic boundary layer in the two-dimensional steady flow past a semi-infinite flat plate. III. The influence of an adverse magneto- dynamic pressure gradient. proceedings of the royal society. A Mathematical, Physical and Engineering Sciences 273(1355): 518-537.

Geng, P. &Kuznetsov, A.V. 2005. Settling of bidispersed small solid particles in a dilute suspension containing gyrotactic micro-organisms. International Journal of Engineering Science 43: 992-1010.

Glauert, M.B. 1961. A study of the magnetohydrodynamic boundary layer on a flat plate. Journal of Fluid Mechanics 10: 276-288.

Idowu, A.S., Dada, M.S., Jimoh, A. & Command, K.S. 2013. Heat and mass transfer of magnetohydrodynamic( mhd ) and dissipative fluid flow past a moving vertical porous plate with variable suction. Mathematical Theory and Modeling 3(3): 80-103.

Ishak, A. 2011. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains Malaysiana 40(4): 391-395.

Kuznetsov, A.V., Avramenko, A.A. & Geng, P. 2004. Analytical investigation of a falling plume caused by bioconvection of oxytactic bacteria in a fluid saturated porous medium. International Journal of Engineering Science 42: 557-569.

Kuznetsov, A.V. & Nield, D.A. 2010. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences 49: 243-247.

Kuznetsov, A.V. 2011. Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. European Journal of Mechanics, B/Fluids 30(2): 156-165.

Kuznetsov, A.V. & Avramenko, A.A. 2004. Effect of small particles on this stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. International Communications in Heat and Mass Transfer 31(1): 1-10.

Kuznetsov, A.V. & Nield, D.A. 2014. The onset of convection in a horizontal nanofluid layer of finite depth: A revised model. International Journal of Heat and Mass Transfer 77: 915-918.

Michael, D.H. 1954. A two dimensional magnetic boundary layer problem. Mathematika 1: 131-142.

Mutuku, W.N. & Makinde, O.D. 2014. Hydromagnetic bioconvection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Computers & Fluids 95: 88-97.

Nield, D.A. & Bejan A. 2006. Convection in Porous Media. 3rd ed. New York: Springer.

Saidur, R., Leong, K.Y. & Mohammad, H.A. 2011. A review on applications and challenges of nanofluids. Renew Sustain Energy Review 15: 1646-1668.

Sinha, A. & Misra, J.C. 2014. Effect of induced magnetic field on magneto hydrodynamic stagnation point flow and heat transfer on a stretching sheet. Journal of Heat Transfer 136(11): 112701.

Kiwan, S. & Al-Nimr, M.A. 2010. Investigation into the similarity solution for boundary layer flows in microsystems. ASME Journal of Heat Transfer 132(4): 041011.

Takhar, H.S., Kumari, M. & Nath, G.G. 1993. Unsteady free convection flow under the influence of a magnetic field. Archive of Applied Mechanics 63(4-5): 313-321.

Takhar, H.S. & Nath, G. 1997. Similarity solution of unsteady boundary layer equations with a magnetic field. Meccanica 32: 157-163.

Tham, L., Roslinda, N. & Pop, I. 2013. Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. International Journal of Heat and Mass Transfer 62: 647-660.

Uddin, M.J., Pop, I. & Ismail, A.I.M. 2012. Free convection boundary layer flow of a nanofluid from a convectively heated vertical plate with linear momentum slip boundary condition. Sains Malaysiana 41(11): 1475-1482.

Xu, H. & Pop, I. 2014. Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. European Journal of Mechanics - B/Fluids 46: 37-45.

Yusoff, N.H.M., Uddin, M.J. & Ismail, A.I.M. 2014. Combined similarity-numerical solutions of MHD boundary layer slip flow of non-newtonian power-law nanofluids over a radiating moving plate. Sains Malaysiana 43(1): 151-159.

Wong, K.V. & Leon, O.D. 2010. Applications of nanofluids: Current and future. Advances in Mechanical Engineering 2: 519659.

Zaimi, K., Ishak, A. & Pop, I. 2014. Stagnation-point flow toward a stretching/shrinking sheet in a nanofluid containing both nanoparticles and gyrotactic microorganisms. ASME Journal of Heat Transfer 136(4): 041705.

 

 

*Corresponding author; emails: faisalbasir91@gmail.com

 

 

 

previous