Sains Malaysiana 46(2)(2017): 335–347

http://dx.doi.org/10.17576/jsm-2017-4602-19

 

A Novel Collocation Method Based on Residual Error Analysis for Solving Integro-Differential Equations Using Hybrid Dickson and Taylor Polynomials

(Kaedah Novel Kolokasi Berdasarkan Analisis Sisa Ralat untuk Menyelesaikan Persamaan

Integro-Pembezaan yang Menggunakan Hibrid Dickson dan Polinomial Taylor)

 

ÖMÜR KIVANÇ KÜRKÇÜ1*, ERSIN ASLAN2 & MEHMET SEZER3

 

1Department of Mathematics, Faculty of Science, Celal Bayar University, Manisa 45140

Turkey

 

2Turgutlu Vocational Training School, Celal Bayar University, Manisa, Turkey

 

3Department of Mathematics, Faculty of Science, Celal Bayar University, Manisa 45140

Turkey

 

Received: 1 May 2015/Accepted: 18 June 2016

 

ABSTRACT

In this study, a novel matrix method based on collocation points is proposed to solve some linear and nonlinear integro-differential equations with variable coefficients under the mixed conditions. The solutions are obtained by means of Dickson and Taylor polynomials. The presented method transforms the equation and its conditions into matrix equations which comply with a system of linear algebraic equations with unknown Dickson coefficients, via collocation points in a finite interval. While solving the matrix equation, the Dickson coefficients and the polynomial approximation are obtained. Besides, the residual error analysis for our method is presented and illustrative examples are given to demonstrate the validity and applicability of the method.

 

Keywords: Collocation and matrix methods; Dickson and Taylor polynomials; integro-differential equations; nonlinear equations; pseudocode

 

ABSTRAK

Dalam kajian ini, kaedah matriks novel berdasarkan titik kolokasi adalah dicadangkan untuk menyelesaikan persamaan integro-pembezaan bagi sesetengah linear dan tak linear dengan pekali pemboleh ubah dalam keadaan bercampur-campur. Penyelesaian yang diperoleh dengan cara polinomial Dickson dan Taylor. Kaedah yang dibentangkan mengubah persamaan serta keadaannya ke dalam persamaan matriks yang bertepatan dengan sistem persamaan algebra linear dengan pekali Dickson tidak diketahui, melalui titik kolokasi dalam selang terhingga. Semasa menyelesaikan persamaan matriks ini, pekali Dickson dan penganggaran polinomial diperoleh. Selain itu, analisis sisa ralat bagi kaedah kami ini telah dikemukakan dan contoh ilustrasi diberi untuk menunjukkan kesahihan dan penerapan kaedah.

 

Kata kunci: Kolokasi dan kaedah matriks; polinomial Dickson dan Taylor; persamaan integro-pembezaan; persamaan tak linear; tatasusunan

REFERENCES

 

Akyüz-Daşc?oğlu, A. & Sezer, M. 2007. A Taylor polynomial approach for solving high-order linear Fredholm integro-differential equations in the most general form. Int. J. Comput. Math. 84(4): 527-539.

Akyüz-Daşc?oğlu, A. 2006. A Chebyshev polynomial approach for linear Fredholm-Volterra integro-differential equations in the most general form. Appl. Math. Comput. 181: 103-112.

Babolian, E., Lotfi, T. & Paripour, M. 2007. Wavelet moment method for solving Fredholm integral equations of the first kind. Appl. Math. Comput. 186: 1467-1471.

Bhargava, M. & Zieve, M.E. 1999. Factorizing Dickson polynomials over finite fields. Finite Fields Appl. 5: 103-111.

Brewer, B.W. 1961. On certain character sums. Transactions of the American Mathematical Society 99(2): 241-245.

Dickson, L.E. 1896. The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group I-II. Annals of Mathematics 11(1/6): 65-120.

Evans, D.J. & Raslan, K.R. 2005. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math. 82: 49-54.

Fernando, N. 2013. A study of permutation polynomials over finite fields. University of South Florida.

Kürkçü, Ö.K., Ersin, A. & Sezer, M. 2016. A numerical approach with error estimation to solve general integro-differential-difference equations using Dickson polynomials. Appl. Math. Comput. 276: 324-339.

Karamete, A. & Sezer, M. 2002. A Taylor collocation method for the solution of linear integro-differential equations. Int. J. Comput. Math. 79(9): 987-1000.

Kurt, N. & Sezer, M. 2008. Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients. J. Franklin Inst. 345: 839-850.

Lidl, R., Mullen, G.L. & Turnwald, G. 1993. Dickson polynomials, Pitman monographs and surveys in pure and applied mathematics. Longman Scientific and Technical. Harlow, Essex. p. 65.

Sezer, M. 1996. A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials. Int. J. Math. Educ. Sci. Technol. 27(6): 821-834.

Sezer, M. 1994. Taylor polynomial solutions of Volterra integral equations. Int. J. Math. Educ. Sci. Technol. 25(5): 625-633.

Stoll, T. 2007. Complete decomposition of Dickson-type recursive polynomials and a related Diophantine equation. Formal Power Series and Algebraic Combinatorics, Tianjin, China.

Wei, P., Liao, X. & Wong, K-W. 2011. Key exchange based on Dickson polynomials over finite field with 2^m. Journal of Computers 6(12): 2546-2551.

Yalç?nbaş, S., Sezer, M. & Sorkun, H. 2009. Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Comput. 210: 334-349.

Yalç?nbaş, S. & Sezer, M. 2000. The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials. Appl. Math. Comput. 112: 291-308.

Yüzbaş?, Ş., Şahin, N. & Sezer, M. 2011. Bessel polynomial solutions of high-order linear Volterra integro-differential equations. Computers and Mathematics with Applications 62: 1940-1956.

 

 

*Corresponding author; email: omurkivanc@outlook.com

 

 

 

previous