Sains Malaysiana 46(3)(2017): 373–380

http://dx.doi.org/10.17576/jsm-2017-4603-03

 

Evaluation of the Effect of Sidoarjo Mud on Aquatic Life Using Chromatophores and the Microstructure of Fish Scales

(Penilaian Kesan Lumpur Sidoarjo Terhadap Hidupan Akuatik Menggunakan Kromatofor dan Mikrostruktur Sisik Ikan)

 

DEWI HIDAYATI1, NORELA SULAIMAN2*, B.S. ISMAIL2, M. SHUHAIMI-OTHMAN2 

& M.E. DE BELLARD3

 

1Department of Biology, Faculty of Mathematics and Science (FMIPA), Institut Teknologi Sepuluh Nopember, Surabaya-60111, Indonesia

 

2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Biology, California State University, Northridge, USA

 

Received: 10 October 2014/Accepted: 23 July 2016

 

ABSTRACT

The Sidoarjo mud is the first visible phenomenon of a mud volcano that occurs in a human settlement and which is subsequently channelled into a river. Clay, aluminium and iron were reported to be the dominant contaminants that could possibly come into contact with and accumulate on the surface of local fish and initiate alteration in scale microstructure. The aim of this study was to evaluate the extent of water body contamination in the Sidoarjo mud by evaluating the chromatophore density and microstructure deformation of fish scales that act as biomarkers. Scale samples were obtained from caged Mozambique tilapia (Oreochromis mossambicus) fish that were placed downstream and upstream of the Sidoarjo mud spillway pipes. With respect to melanophore density, it was found that the scales of fish exposed in the downstream section were significantly lower in chromatophores (<50 chr/mm²) than the control scales in fish from the upstream station (>100 chr/mm²). This study suggested that the density of chromatophores was closely related to the concentration of total suspended solids (r = 0.69), which was possibly enhanced by iron (r = 0.56). Using scanning electron microscopy analysis, some deformation, i.e. irregularity of spherule shape and increasing pits in the space between ridges, were observed.

 

Keywords: Fish scale chromatophore; metal; SEM; Sidoarjo mud; suspended solid

 

ABSTRAK

Lumpur Sidoarjo adalah fenomena pertama daripada gunung lumpur yang berlaku di kawasan berpenghuni dan disalurkan terus ke dalam sungai. Tanah liat, aluminium dan besi dilaporkan sebagai bahan cemar dominan yang mungkin boleh bersentuhan dan berkumpul di permukaan badan ikan tempatan dan menyebabkan perubahan pada mikrostruktur sisik. Kajian ini bertujuan untuk menilai kesan pencemaran lumpur Sidoarjo pada jasad air menggunakan ketumpatan kromatofor dan perubahan bentuk mikrostruktur pada sisik ikan yang bertindak sebagai penanda biologi. Sampel sisik diperoleh daripada ikan tilapia (Oreochromis mossambicus) yang dikurung di dalam sangkar dan diletak di hulu dan hilir paip efluen lumpur Sidoarjo. Ketumpatan kromatofor pada sisik ikan yang terdedah di kawasan hilir adalah jauh lebih rendah (<50 kromatofor/mm²) dibandingkan dengan ikan dari kawasan hulu atau kawalan (>100 kromatofor/mm²). Kajian ini mencadangkan bahawa ketumpatan kromatofor berkait rapat dengan kepekatan pepejal terampai (r=0.69) yang mungkin dipertingkatkan oleh kepekatan besi (r=0.56). Berdasarkan analisis mikrostruktur menggunakan mikroskop imbasan elektron (SEM), beberapa perubahan bentuk dijumpai, iaitu ketidakteraturan bentuk sferul dan peningkatan lubang pada permukaan sisik di antara rabung.

 

Kata kunci: Kromatofor sisik ikan; logam; lumpur Sidoarjo; pepejal terampai; SEM

REFERENCES

Acharya, L.S.K. & Ovais, M. 2007. α1 and α2 adrenoceptor mediated melanosome aggregatory responses in vitro in Oreochromis mossambicus (Peters) melanophores. Indian Journal of Experimental Biology 45: 984-991.

Allen, T., Awasthi, A. & Rana, S.V.S. 2004. Fish chromatophores as biomarkers of arsenic exposure. Environmental Biology of Fishes 71(1): 7-11.

Canadian WQGs. 1998. Guidelines for Interpreting Water Quality (WQGs) Data Province of British Columbia, Ministry of Environment, Lands and Parks. Accessed on January 5 2011. http://www.ilmb.gov.bc.ca/risc/pubs/ aquatic/interp/ interp.htm.

Dietrich, M.A. 1953. A histological study of the development of the largemouth black bass (Micropterus salmoides). Quarterly Journal of Microscopical Science 94: 71-82.

Dulcis, D. & Spitzer, N.C. 2008. Illumination controls differentiation of dopamine neurons regulating behaviour. Nature 456: 195-201.

Elangovan, R., Balance, S., White, K.N., McCrohan, C.R. & Powell, J.J. 1999. Accumulation of aluminium by the freshwater crustacean Asellus aquaticus in neutral pH. Environmental Pollution 106(3): 257-263.

Esmaeili, H.R., Gholamifard, A., Zarei, N. & Arshadi, A. 2012. Scale structure of a cyprinid fish, Garra rossica (Nikol’skii, 1900) using scanning electron microscope (SEM). Iranian Journal of Science and Technology 4: 487-492.

Esmaeili, H.R., Teimory, A. & Hojat Ansari, T. 2007. Scale structure of cyprinid fish Capoeta damascina (Valenciennes in Cuvier & Valenciennes, 1842) using scanning electron microscope (SEM). Iranian Journal of Science and Technology 31(A3): 255-262.

Gusén, A. 2010. Environmental variation phenotypic plasticity: The effect of water visibility on body pigmentation in perch (Perca fluviatilis L.). Master Thesis. Disciplinary Domain of Science and Technology, Biology, Biology Education Centre, Uppsala University, Sweden (Unpublished).

Hardjito, D., Gunadi, A., Wibowo, M. & Christianto, D. 2012. Pozzolanic activity assessment of lusi (lumpur Sidoarjo) mud in semi high volume pozzolanic mortar. Materials 5: 1654-1660.

Huang, W.H. & Keller, W.D. 1972. Geochemical mechanics for the dissolution, transport, and deposition of aluminum in the zone of weathering. Clay Minerals 20: 69-74.

Istadi, B., Pramono, G.H., Sumintadireja, P. & Alam, S. 2009. Modelling study of growth and potential geohazard for LUSI mud volcano East Java, Indonesia. Journal Marine and Petroleum Geology 26: 1724-1739.

Kapoor, B.G. & Khanna, B. 2004. Ichthyology Handbook. 1st ed. Berlin, Heidelberg: Springer. pp. 55-58.

Leclercq, E., Taylor, J.F. & Migaud, H. 2010. Morphological skin colour changes in teleosts. Fish and Fisheries 11: 159-193.

Malluche, H. 2002. Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation 17: 21-24.

Payne, J.F., French, B., Hamoutene, D., Yeats, P., Rahimtula, A., Scruton, D. & Andrews, C. 2001. Are metal mining effluent regulations adequate? Identification of a novel bleached fish syndrome in association with iron-ore mining effluents in Labrador, Newfoundland. Aquatic Toxicology 52: 311-317.

Phippen, B., Horvath, C., Nordin, R. & Nagpal, N. 2008. Ambient Water Quality Guidelines for Iron. Overview Report, Water Stewardship Division Ministry of Environment, Province of British Columbia.

Plumlee, G.S., Casadevall, T.J., Wibowo, H.T., Rosenbauer, R.J., Johnson, C.A., Breit, G.N., Lowers, H.A., Wolf, R.E., Hageman, P.L., Goldstein, H., Anthony, M.W., Berry, C.J., Fey, D.L., Meeker, G.P. & Morman, S.A. 2008. Preliminary analytical results for a mud sample collected from the lusi mud volcano, Sidoarjo, East Java, Indonesia. U.S. Geological Survey Open-File Report 2008.

PPRI (Peraturan Pemerintah Republik Indonesia). 2001. Indonesian government regulation for water quality, No. 82.

Promwikorn, W., Boonyoung, P. & Kirirat, P. 2005. Histological characterization of cuticular depositions throughout the moulting cycle of the black tiger shrimp (Penaeus monodon). Songklanakarin Journal of Science and Technology 27(3): 499-509.

Radhakrishnan, M.V., Hemalatha, S. & Paul, V.I. 2000. Effect of cadmium chloride on the melanophores of Channa striatus (Bloch). Indian Journal of Fisheries 47: 135-141.

Rishi, K.K. & Jain, M. 1998. Effect of toxicity of cadmium on scale morphology in Cyprinus carpio (Cyprinidae). Bulletin of Environmental Contamination and Toxicology 60: 323- 328.

Schmedtje, U. 2001. Assessment of the Ecological Status and Classification of Surface Water Bodies. UN-ECE Workshop, Approaches and Tools for River Basin Management.

Shikha, S. & Sushma, D. 2011. Effect of fly ash pollution on fish scales. Research Journal of Chemical Sciences 1: 24-28.

Sire, J.Y. 1988. Evidence that mineralised spherules are involved in the formation of the superficial layer of the elasmoid scale in the cichlids Hemichromis bimaculatus and Cichlasoma octofasciatum (Pisces, Teleostei): An epidermal active participation? Cell Tissue Research 253: 165-172.

Sire, J.Y. & Akimenko, M.A. 2004. Scale development in fish: A review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). The International Journal of Developmental Biology 48(2-3): 233-247.

Sugimoto, M. 2002. Morphological color changes in fish: Regulation of pigment cell density and morphology. Microscopy Research and Technique 58: 496-503.

Sukresno, B., Priyono, B., Zahrudin, D.A. & Subki, B.A. 2008. Investigation of total suspended matter in Porong region using aqua-modis satellite data and numerical model. Research Report, Institute for Marine Research and Observation (IMRO).

Swedish EPA (Swedish Environmental Protection Agency). 2010. Status, potential and quality requiremenets for lakes, watercourses, coastal and transitional water. A Handbook on How Quality Requirements in Bodies of Surface Water Can Be Determined and Monitored. Naturvardsverket, Stockholm.

Talwar, P.K. & Jhingran, A.G. 1992. Inland fishes of India and Adjacent Countries. Vol-1 and Vol-2. Oxford and IBH Publishing Co. PVT. Ltd. New Delhi, Bombay and Calcutta. p. 1063.

Tang, S.M., Orlic, I., Yu, K.N., Sanchez, J.L., Thong, P.S.P., Watt, F. & Khoo, H.W. 1997. Nuclear microscopy study of fish scales. Nuclear Instruments and Methods in Physics Research 130: 396-401.

Udipi, S., Ghugre, P. & Gokhale, C. 2012. Iron, oxidative stress and health. In Oxidative Stress - Molecular Mechanisms and Biological Effects, edited by Lushchak, V.I. & Semchyshyn, H.M. http://www.intechopen.com/books/oxidative-stress-molecular-mechanisms-and-biological-effects/iron-oxidative-stress-and-health-authors.

USEPA (U.S. Environmental Protection Agency). 1971. Method 160.2. Residue, Non-filterable (Gravimetric, Dried at 103- 105°C).http://www.caslab.com/EPA-Methods/PDF/EPA-Method-160-2.pdf.

USEPA (U.S. Environmental Protection Agency). 1994. Methods 200.7. Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry.Environmental Monitoring Systems Laboratory Office of Research and Development, U. S. Environmental Protection Agency Cincinnati, Ohio.

USGS. 2011. Water Science Glossary of Terms. U.S. Geological Survey. Accessed on February 1 2012. http://water.usgs.gov/ edu/dictionary.html.

van Eys, G.J. & Peters, P.T. 1981. Evidence for a direct role of alpha-MSH in morphological background adaptation of the skin in Sarotherodon mossambicus. Cell and Tissue Research 217: 361-372 .

Vazquez-Martinez, R., Peinado, J.R., Gonzalez, J.L., Desrues, L., Tonon, M.C., Vaudry, H., Gracia-Navarro, F. & Malagon, M.M. 2001. Melanotrope cell plasticity: A key mechanism for the physiological adaptation to background color changes. Endocrinology 142: 3060-3067.

WHO (World Health Organization). 1996. pH in Drinking Water, Originally Published by Guidelines for Drinking Water Quality. 2nd ed. Volume 2. World Health Organization, Geneva.

Zaenuddin, A., Badri, I., Padmawidjaja, T., Humaida, H. & Sutaningsih, E. 2010. Geological Phenomenon of Sidoarjo Mud Flow. Geology Agency, Ministry of Energy and Mineral Resources.

Zarjou, A.V., Jeney, P., Arosio, M., Poli, E., Zavaczki, G. & Balla, J. 2010. Ferritin ferroxidase activity: A potent inhibitor of osteogenesis. Journal of Bone and Mineral Research 25(1): 164-172.

Zhu, J.M., Huffer, W. & Alfrey, A.C. 1990. Effect of aluminium on bone matrix inductive properties. Kidney International 38(6): 1141-1145.

 

 

*Corresponding author; email: vozela@ukm.edu.my

 

 

 

previous