Sains Malaysiana 46(3)(2017): 373–380
http://dx.doi.org/10.17576/jsm-2017-4603-03
Evaluation of the Effect of Sidoarjo Mud on
Aquatic Life Using Chromatophores and the Microstructure of Fish Scales
(Penilaian Kesan Lumpur Sidoarjo Terhadap
Hidupan Akuatik Menggunakan Kromatofor dan Mikrostruktur Sisik Ikan)
DEWI HIDAYATI1, NORELA SULAIMAN2*, B.S. ISMAIL2, M. SHUHAIMI-OTHMAN2
& M.E. DE BELLARD3
1Department of Biology, Faculty of Mathematics and Science
(FMIPA), Institut Teknologi Sepuluh Nopember, Surabaya-60111, Indonesia
2School of Environmental and Natural Resource Sciences,
Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor Darul Ehsan, Malaysia
3Department of Biology, California State University,
Northridge, USA
Received: 10 October 2014/Accepted: 23
July 2016
ABSTRACT
The Sidoarjo mud is the first
visible phenomenon of a mud volcano that occurs in a human settlement and which
is subsequently channelled into a river. Clay, aluminium and iron were reported
to be the dominant contaminants that could possibly come into contact with and
accumulate on the surface of local fish and initiate alteration in scale
microstructure. The aim of this study was to evaluate the extent of water body
contamination in the Sidoarjo mud by evaluating the chromatophore density and
microstructure deformation of fish scales that act as biomarkers. Scale samples
were obtained from caged Mozambique tilapia (Oreochromis mossambicus) fish
that were placed downstream and upstream of the Sidoarjo mud spillway pipes.
With respect to melanophore density, it was found that the scales of fish
exposed in the downstream section were significantly lower in chromatophores
(<50 chr/mm²) than the control scales in fish from the upstream station
(>100 chr/mm²). This study suggested that the density of chromatophores
was closely related to the concentration of total suspended solids (r =
0.69), which was possibly enhanced by iron (r = 0.56). Using scanning
electron microscopy analysis, some deformation, i.e. irregularity of spherule
shape and increasing pits in the space between ridges, were observed.
Keywords: Fish scale chromatophore;
metal; SEM; Sidoarjo mud; suspended solid
ABSTRAK
Lumpur
Sidoarjo adalah fenomena pertama daripada gunung lumpur yang berlaku di kawasan
berpenghuni dan disalurkan terus ke dalam sungai. Tanah liat, aluminium dan besi dilaporkan sebagai bahan cemar
dominan yang mungkin boleh bersentuhan dan berkumpul di permukaan badan ikan
tempatan dan menyebabkan perubahan pada mikrostruktur sisik. Kajian ini bertujuan untuk menilai kesan pencemaran lumpur Sidoarjo
pada jasad air menggunakan ketumpatan kromatofor dan perubahan bentuk
mikrostruktur pada sisik ikan yang bertindak sebagai penanda biologi. Sampel sisik diperoleh daripada ikan tilapia (Oreochromis mossambicus) yang dikurung di
dalam sangkar dan diletak di hulu dan hilir paip efluen lumpur Sidoarjo. Ketumpatan kromatofor pada sisik ikan yang terdedah di
kawasan hilir adalah jauh lebih rendah (<50 kromatofor/mm²) dibandingkan
dengan ikan dari kawasan hulu atau kawalan (>100 kromatofor/mm²). Kajian ini mencadangkan bahawa ketumpatan kromatofor berkait rapat dengan
kepekatan pepejal terampai (r=0.69) yang mungkin
dipertingkatkan oleh kepekatan besi (r=0.56). Berdasarkan
analisis mikrostruktur menggunakan mikroskop imbasan elektron (SEM),
beberapa perubahan bentuk dijumpai, iaitu ketidakteraturan bentuk sferul dan
peningkatan lubang pada permukaan sisik di antara rabung.
Kata kunci: Kromatofor sisik ikan; logam; lumpur Sidoarjo; pepejal
terampai; SEM
REFERENCES
Acharya,
L.S.K. & Ovais, M. 2007. α1 and α2 adrenoceptor mediated
melanosome aggregatory responses in vitro in Oreochromis mossambicus (Peters)
melanophores. Indian Journal of Experimental Biology 45: 984-991.
Allen,
T., Awasthi, A. & Rana, S.V.S. 2004. Fish chromatophores as
biomarkers of arsenic exposure. Environmental Biology of Fishes 71(1):
7-11.
Canadian
WQGs. 1998. Guidelines for Interpreting Water Quality (WQGs) Data
Province of British Columbia, Ministry of Environment, Lands and Parks. Accessed on January 5 2011. http://www.ilmb.gov.bc.ca/risc/pubs/
aquatic/interp/ interp.htm.
Dietrich, M.A. 1953. A histological study of the development of the largemouth black
bass (Micropterus salmoides). Quarterly Journal of
Microscopical Science 94: 71-82.
Dulcis, D. &
Spitzer, N.C. 2008. Illumination controls differentiation of dopamine neurons
regulating behaviour. Nature 456: 195-201.
Elangovan, R., Balance,
S., White, K.N., McCrohan, C.R. & Powell, J.J. 1999. Accumulation
of aluminium by the freshwater crustacean Asellus aquaticus in neutral
pH. Environmental Pollution 106(3): 257-263.
Esmaeili,
H.R., Gholamifard, A., Zarei, N. & Arshadi, A. 2012. Scale structure of a
cyprinid fish, Garra rossica (Nikol’skii, 1900) using scanning electron
microscope (SEM). Iranian Journal of Science and Technology 4: 487-492.
Esmaeili, H.R., Teimory,
A. & Hojat Ansari, T. 2007. Scale structure of cyprinid fish Capoeta
damascina (Valenciennes in Cuvier & Valenciennes, 1842) using scanning
electron microscope (SEM). Iranian Journal of Science and Technology 31(A3):
255-262.
Gusén,
A. 2010.
Environmental variation phenotypic plasticity: The effect of water
visibility on body pigmentation in perch (Perca fluviatilis L.).
Master Thesis. Disciplinary Domain of Science and Technology, Biology, Biology
Education Centre, Uppsala University, Sweden (Unpublished).
Hardjito,
D., Gunadi, A., Wibowo, M. & Christianto, D. 2012. Pozzolanic
activity assessment of lusi (lumpur Sidoarjo) mud in semi high volume
pozzolanic mortar. Materials 5: 1654-1660.
Huang, W.H. &
Keller, W.D. 1972. Geochemical mechanics for the dissolution,
transport, and deposition of aluminum in the zone of weathering. Clay
Minerals 20: 69-74.
Istadi, B., Pramono,
G.H., Sumintadireja, P. & Alam, S. 2009. Modelling study of growth and
potential geohazard for LUSI mud volcano East Java, Indonesia. Journal
Marine and Petroleum Geology 26: 1724-1739.
Kapoor, B.G. &
Khanna, B. 2004. Ichthyology Handbook. 1st ed. Berlin, Heidelberg:
Springer. pp. 55-58.
Leclercq,
E., Taylor, J.F. & Migaud, H. 2010. Morphological skin colour changes in
teleosts. Fish and Fisheries 11: 159-193.
Malluche, H. 2002. Aluminium and bone disease in chronic renal failure. Nephrology
Dialysis Transplantation 17: 21-24.
Payne,
J.F., French, B., Hamoutene, D., Yeats, P., Rahimtula, A., Scruton, D. &
Andrews, C. 2001. Are metal mining effluent regulations adequate? Identification of a novel
bleached fish syndrome in association with iron-ore mining effluents in Labrador,
Newfoundland. Aquatic Toxicology 52: 311-317.
Phippen,
B., Horvath, C., Nordin, R. & Nagpal, N. 2008. Ambient
Water Quality Guidelines for Iron. Overview
Report, Water Stewardship Division Ministry of Environment, Province of British
Columbia.
Plumlee, G.S.,
Casadevall, T.J., Wibowo, H.T., Rosenbauer, R.J., Johnson, C.A., Breit, G.N.,
Lowers, H.A., Wolf, R.E., Hageman, P.L., Goldstein, H., Anthony, M.W., Berry,
C.J., Fey, D.L., Meeker, G.P. & Morman, S.A. 2008. Preliminary analytical
results for a mud sample collected from the lusi mud volcano, Sidoarjo, East
Java, Indonesia. U.S. Geological Survey Open-File Report 2008.
PPRI
(Peraturan Pemerintah Republik Indonesia). 2001. Indonesian government regulation
for water quality, No. 82.
Promwikorn, W., Boonyoung,
P. & Kirirat, P. 2005. Histological characterization of
cuticular depositions throughout the moulting cycle of the black tiger shrimp (Penaeus
monodon). Songklanakarin Journal of Science and Technology 27(3):
499-509.
Radhakrishnan, M.V.,
Hemalatha, S. & Paul, V.I. 2000. Effect of cadmium
chloride on the melanophores of Channa striatus (Bloch). Indian
Journal of Fisheries 47: 135-141.
Rishi,
K.K. & Jain, M. 1998. Effect of toxicity of cadmium
on scale morphology in Cyprinus carpio (Cyprinidae). Bulletin
of Environmental Contamination and Toxicology 60: 323- 328.
Schmedtje, U. 2001. Assessment of the Ecological Status and Classification of
Surface Water Bodies. UN-ECE Workshop, Approaches and Tools for
River Basin Management.
Shikha, S. & Sushma, D. 2011. Effect of fly ash
pollution on fish scales. Research Journal of Chemical Sciences 1:
24-28.
Sire, J.Y. 1988. Evidence that
mineralised spherules are involved in the formation of the superficial layer of
the elasmoid scale in the cichlids Hemichromis bimaculatus and Cichlasoma
octofasciatum (Pisces, Teleostei): An epidermal active participation? Cell
Tissue Research 253: 165-172.
Sire, J.Y. & Akimenko, M.A. 2004.
Scale development in fish: A review, with description of sonic hedgehog (shh) expression
in the zebrafish (Danio rerio). The International Journal of
Developmental Biology 48(2-3): 233-247.
Sugimoto, M. 2002. Morphological color
changes in fish: Regulation of pigment cell density and morphology. Microscopy
Research and Technique 58: 496-503.
Sukresno, B., Priyono,
B., Zahrudin, D.A. & Subki, B.A. 2008. Investigation of total suspended matter in Porong region
using aqua-modis satellite data and numerical model. Research Report,
Institute for Marine Research and Observation (IMRO).
Swedish EPA (Swedish
Environmental Protection Agency). 2010. Status, potential and quality requiremenets for lakes, watercourses,
coastal and transitional water. A Handbook on How Quality Requirements in
Bodies of Surface Water Can Be Determined and Monitored. Naturvardsverket,
Stockholm.
Talwar, P.K. & Jhingran, A.G. 1992. Inland fishes of India and Adjacent Countries. Vol-1 and Vol-2. Oxford and IBH Publishing Co. PVT. Ltd. New
Delhi, Bombay and Calcutta. p. 1063.
Tang, S.M., Orlic, I., Yu, K.N., Sanchez,
J.L., Thong, P.S.P., Watt, F. & Khoo, H.W. 1997. Nuclear microscopy study
of fish scales. Nuclear Instruments and Methods in Physics Research 130:
396-401.
Udipi, S., Ghugre, P.
& Gokhale, C. 2012. Iron, oxidative stress and health. In Oxidative
Stress - Molecular Mechanisms and Biological Effects, edited by Lushchak,
V.I. & Semchyshyn, H.M.
http://www.intechopen.com/books/oxidative-stress-molecular-mechanisms-and-biological-effects/iron-oxidative-stress-and-health-authors.
USEPA (U.S. Environmental Protection
Agency). 1971. Method 160.2. Residue, Non-filterable
(Gravimetric, Dried at 103- 105°C).http://www.caslab.com/EPA-Methods/PDF/EPA-Method-160-2.pdf.
USEPA (U.S. Environmental Protection
Agency). 1994. Methods 200.7. Determination of Metals and
Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic
Emission Spectrometry.Environmental Monitoring
Systems Laboratory Office of Research and Development, U. S. Environmental
Protection Agency Cincinnati, Ohio.
USGS. 2011. Water Science Glossary of
Terms. U.S. Geological Survey. Accessed on February 1
2012. http://water.usgs.gov/ edu/dictionary.html.
van Eys, G.J. & Peters, P.T. 1981. Evidence for a direct role of alpha-MSH in morphological background
adaptation of the skin in Sarotherodon mossambicus. Cell and
Tissue Research 217: 361-372 .
Vazquez-Martinez, R., Peinado, J.R.,
Gonzalez, J.L., Desrues, L., Tonon, M.C., Vaudry, H., Gracia-Navarro, F. &
Malagon, M.M. 2001. Melanotrope cell plasticity: A key mechanism for the
physiological adaptation to background color changes. Endocrinology 142:
3060-3067.
WHO (World Health
Organization). 1996. pH in Drinking Water, Originally Published by
Guidelines for Drinking Water Quality. 2nd ed. Volume 2. World Health Organization, Geneva.
Zaenuddin, A., Badri,
I., Padmawidjaja, T., Humaida, H. & Sutaningsih, E. 2010. Geological
Phenomenon of Sidoarjo Mud Flow. Geology Agency,
Ministry of Energy and Mineral Resources.
Zarjou, A.V., Jeney,
P., Arosio, M., Poli, E., Zavaczki, G. & Balla, J. 2010. Ferritin ferroxidase activity: A potent
inhibitor of osteogenesis. Journal of Bone and Mineral Research 25(1):
164-172.
Zhu, J.M., Huffer, W. & Alfrey, A.C.
1990. Effect of aluminium on bone matrix inductive
properties. Kidney International 38(6): 1141-1145.
*Corresponding author; email: vozela@ukm.edu.my
|