Sains Malaysiana 46(3)(2017):
413–420
http://dx.doi.org/10.17576/jsm-2017-4603-08
Geospatial Techniques for Assessment of Bank
Erosion and Accretion in the Marala Alexandria Reach of the River Chenab,
Pakistan
(Teknik Georeruang bagi Penilaian Hakisan Tebing
dan Tokokan di Rantau Marala Alexandria, Sungai Chenab, Pakistan)
M. HAMID
CH1*,
M.
ASHRAF2,
QUDSIA
HAMID1,
SYED
MANSOOR
SARWAR3
& ZULFIQAR
AHMAD
SAQIB4
1GIS Centre, University
of the Punjab, Lahore, Pakistan
2Centre of Excellence in Water
Resource Engineering, University of Engineering and Technology, Lahore,
Pakistan
3Punjab University
College of Information Technology, University of the Punjab, Lahore
Pakistan
4Institute of Soil and
Environmental Sciences, University of Agriculture, Faisalabad, 38040
Pakistan
Received: 4 December
2015/Accepted: 17 June 2016
ABSTRACT
Remote Sensing (RS)
and Geographical Information Systems (GIS) are widely used for change
detection in rivers caused by erosion and accretion. Digital image processing
techniques and GIS analysis capabilities are used for
detecting temporal variations of erosion and accretion characteristics between
the years 1999 and 2011 in a 40 km long Marala Alexandria reach of River
Chenab. Landsat satellite images for the years 1999, 2007 and 2011 were
processed to analyze the river channel migration, changes in the river width
and the rate of erosion and accretion. Analyses showed that the right bank was
under erosion in both time spans, however high rate of deposition is exhibited
in middle reaches. The maximum erosion was 1569843 m2 and
1486160 m2 along the right bank at a
distance of 24-28 km downstream of the Marala barrage in the time span of
1999-2007 and 2007-2011, respectively. Along right bank mainly there is trend
of accretion but erosion is much greater between 20 and 28 km reach. Maximum
accretion was 5144584 m2 from
1999-2007 and 2950110 m2 from
2007-2011 on the right bank downstream of the Marala Barrage. The derived
results of channel migration were validated by comparing with SRTM data
to assess the accuracy of image classification. Integration of remote sensing
data with GIS is efficient and economical technique to assess land
losses and channel changes in large rivers.
Keywords: Accretion; erosion; GIS;
image processing; remote sensing
ABSTRAK
Pengesanan
Jarak Jauh (RS) dan Sistem Maklumat Geografi (GIS)
digunakan secara meluas untuk mengesan perubahan di sungai-sungai
yang disebabkan oleh hakisan dan tokokan. Keupayaan
teknik pemprosesan imej digital dan analisis GIS digunakan
untuk mengesan variasi temporal hakisan dan tokokan antara tahun
1999 dan 2011 di sepanjang 40 km rantau Marala Alexandria di Sungai
Chenab. Imej satelit Landsat bagi tahun 1999, 2007 dan 2011 telah
diproses untuk analisis migrasi aliran sungai tersebut, perubahan
dalam lebar sungai serta kadar hakisan dan tokokan. Analisis menunjukkan
tebing di sebelah kanan terhakis pada kedua-dua tempoh masa, walau
bagaimanapun kadar pemendapan yang tinggi
ditunjukkan pada rantau pertengahan. Hakisan maksimum ialah 1569843
m2
dan 1486160 m2 di sepanjang tebing kanan pada
jarak 24-28 km di hilir baraj Marala masing-masing dalam jangka
masa 1999-2007 dan 2007-2011. Terdapat trend tokokan terutamanya
di sepanjang tebing kanan tetapi hakisan adalah lebih besar antara
jarak 20-28 km. Tokokan maksimum ialah 5144584 m2 dari 1999-2007 dan 2950110 m2
2007-2011 di tebing kanan hilir baraj Marala. Keputusan
migrasi aliran yang diperoleh telah disahkan dengan membandingkannya
dengan data SRTM
untuk menilai ketepatan pengelasan imej. Integrasi data pengesanan jarak jauh dengan GIS adalah
teknik yang cekap dan ekonomi untuk menilai kehilangan tanah dan
perubahan aliran di sungai-sungai besar.
Kata
kunci: GIS; hakisan; imej pemprosesan;
pengesanan jarak jauh; pertambahan
REFERENCES
Abubaker Haroun Mohamed Adam, Elhag
A.M.H. & Salih, Abdelrahim. M. 2013. Accuracy assessment of land use &
land cover classification (LU/LC) case study of Shomadi area-renk county-upper
Nile State, South Sudan. International Journal of Scientific and Research
Publications 3(5): 1-6.
Alam, J.B., Uddin, M.,
Ahmed, U.J., Cacovean, H., Rahman, H.M., Banik, B.K. & Yesmin, N. 2007. Study of morphological change of river
old Brahmaputra and its social impacts by remote sensing. Geographia
Technica 4(2): 1-11.
Arabinda Sharma &
K.N. Tiwari. 2014. A
comparative appraisal of hydrological behavior of SRTM DEM at catchment level. Journal
of Hydrology 519(Part B): 1394-1404.
Awan, S.A. 2003. Pakistan: Flood
Management-River Chenab from Marala to Khanki, Flood Forecasting Division,
Pakistan Meteorological Department. pp. 123-125.
Ayman A. Ahmed &
Ahmed Fawzi. 2011.
Meandering and bank erosion of the River Nile and its environmental impact on
the area between Sohag and El-Minia, Egypt. Arabian Journal of Geoscience 4:
1-11.
Darby, S.E., Leyland,
J., Kummu, M., Räsäne, T.A. & Lauri, H. 2013. Decoding the drivers of bank erosion on
the Mekong River: The roles of the Asian monsoon, tropical storms, and
snowmelt. Water Resour. Res. 49(4): 2146-2163.
Engay-Gutierrez, K.G.
2015. Land cover change in the Silang- Santa Rosa River Subwatershed,
Laguna, Philippines. Journal of Environmental Science and Management 18(1):
34-46.
Hussain, E., Ural, S.,
Malik, A. & Shan, J. 2011. Mapping Pakistan 2010 floods using remote sensing data. In Proceedings
of the ASPRS Annual Conference, Milwaukee, WI, USA. pp. 1-5.
Leopold, L.B. & Wolman, M.G. 1957.
River channel patterns: Braided, meandering and straight. US Geological
Survey Professional 282-B: 1-85.
Lewin, J. & Brewer, P.A. 2001. Predicting channel patterns. Geomorphology 40:
329-339.
Lillesand, T.M., Kiefer, R.W. &
Chipman, J.W. 2004. Remote Sensing and Image
interpretation. 5 ed. New York: John Wiley
& Sons Ltd.
Lupia, F. 2012. Erdas Imagine 9.2: An
Overview of the Main Features and Tools. Technical Report; DOI:
10.13140/2.1.3689.9525.
Nguyen Lam Dao, Nguyen
Thanh Minh, Pham Thi Mai Thy, Hoang Phi Phung & Hoang Van Huan. 2010. Analysis of changes in the
riverbanks of Mekong River - Vietnam by using multi-temporal remote sensing
data. International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan.
Petts, G.E. 1995. Changing river
channels: The geographical tradition. In Changing River Channels, edited
by Gurnell, A.M. & Petts, G.E. Chichester: John Wiley & Sons Inc. pp.
1-23.
Puletti, N., Perria, R. & Storchi, P.
2014. Unsupervised classification of very high resolution remotely sensed
images for grapevine rows detection. European Journal of Remote Sensing 47:
45-54. doi: http://dx.doi.org/10.5721/ EuJRS20144704.
Rogan, J. & Miller, J.A. 2007. Using
GIS and remote sensing for ecological mapping and monitoring. In Integration
of GIS and Remote Sensing, edited by Masev, V. Chichester: John Wiley and
Sons.
Schumm, S.A. & Khan, H.R. 1972. Experimental study of channel patterns. Geological
Society of America Bulletin 83: 1755-1770.
Shiguo Jiang &
Desheng Liu. 2011. On
chance-adjusted measures for accuracy assessment in remote sensing image
classification. ASPRS 2011 Annual Conference Milwaukee, Wisconsin, May
1-5.
Tou, J.T. &
Gonzalez, R.C. 1974. Pattern Recognition Principles. Reading, Massachusetts: Addison-Wesley Publishing Company.
Bato, V.A., Paningbatan Jr. E.P. & Bartolome, B.J. 2011. High resolution satellite data for comprehensive land-use
planning. Journal of Environmental Science and Management 14(1): 12-23.
Yang,
L., Meng, X. & Zhang, X. 2014. SRTM DEM and its application advances. International
Journal of Remote Sensing 32(14): 3875-3896.
*Corresponding author; email: hamid.ch@pucit.edu.pk
|