Sains Malaysiana 46(3)(2017):
469–476
http://dx.doi.org/10.17576/jsm-2017-4603-15
Aalen's Additive, Cox Proportional Hazards and
The Cox-Aalen Model: Application to Kidney Transplant Data
(Aditif Aalen, Bahaya Berkadaran Cox dan Model
Cox-Aalen: Penggunaan ke atas Data Pemindahan Buah Pinggang)
EMEL BAŞAR*
Department of Statistics, Faculty of
Science, Gazi University 06500 Teknikokullar /Ankara /Turkey
Received: 18 May 2015/Accepted: 20 June
2016
ABSTRACT
The Cox proportional hazards model
is most widely used in survival analysis for modeling censored survival
data. In this model, the effect of the covariates is assumed to
act multiplicatively on the baseline hazard rate and the ratio of
the hazards is constant over survival time. This is an important
assumption and sometimes may not hold in some survival studies.
The Cox model can lead to biased results when the proportionality
assumption is not satisfied. In such a situation, the additive hazards
regression models have been an alternative to proportional hazards
models. The Aalen model allows for time-varying covariate effects.
In some situations, some covariate effects may be constant but the
others may not. In such cases, the Cox-Aalen model is a better alternative
since it allows to combine both kinds of covariates in the same model. In
this study the Cox proportional hazards model, Aalen's additive
hazards model and the Cox-Aalen model have been considered. These
models have been applied to kidney transplant data and the differences
in estimates of the unknown parameters obtained by the Aalen's model,
the Cox model and the Cox-Aalen model are investigated.
Keywords: Aalen's additive hazards
model; Cox-Aalen model; Cox proportional hazards model; kidney transplant
data; survival analysis
ABSTRAK
Model bahaya berkadaran Cox paling
meluas digunakan dalam analisis kemandirian untuk pemodelan data tertapis
kemandirian. Dalam model ini, kesan kovariat diandaikan bertindak secara
berdaya darab atas garis dasar kadar bahaya dan nisbah
bahaya adalah malar dari masa kemandirian. Ini adalah suatu
andaian yang penting dan kadang-kala tidak benar dalam beberapa kajian
kemandirian. Model Cox boleh membawa kepada keputusan yang pincang
apabila andaian perkadaran tidak dipenuhi. Dalam keadaan
sedemikian, model regresi bahaya aditif menjadi alternatif kepada model bahaya
berkadaran. Model Aalen membenarkan kesan kovariat masa yang berbeza.
Dalam sesetengah keadaan, beberapa kesan kovariat adalah malar tetapi yang lain
tidak. Dalam situasi tersebut, model Cox-Aalen adalah alternatif yang lebih
baik kerana ia membolehkan penggabungan kedua-dua
jenis kovariat dalam model yang sama. Dalam kajian ini, model bahaya berkadaran
Cox, model bahaya aditif Aalen dan model Cox-Aalen telah diambil kira.
Model-model ini telah digunakan untuk data pemindahan buah pinggang dan
perbezaan dalam anggaran parameter tidak diketahui yang diperoleh pada model
Aalen, model Cox dan model Cox-Aalen telah dikaji.
Kata kunci: Analisis penakatan; data pemindahan buah pinggang;
model bahaya berkadaran Cox; model bahaya aditif Aalen; model Cox-Aalen
REFERENCES
Aalen, O.O. 1993. Further results on the
non-parametric linear regression model in survival analysis. Statist. Med. 12:
1569-1588.
Aalen, O.O. 1989. A
linear regression model for the analysis of life times. Statist. Med. 8: 907-925.
Aalen, O.O. 1980. A model for
nonparametric regression analysis of counting processes. Lecture Notes in
Statistics-2: Mathematical Statistics and Probability Theory, edited by
Klonecki, W., Kozek, A. & Rosinski, J. New York: Springer. pp. 1-25.
Aalen, O.O., Borgan, Ø.
& Gjessing, H. 2008. Event History Analysis: A Process Point of View. NewYork: Springer.
Andersen, P.K. & Gill, R.D. 1982. Cox's
regression model for counting processes: A large sample study. Annals
of Stat. 10: 1100-1120.
Başar, E. 1993. Applications of some statistical technique
used in life table analysis to the kidney transplantation data.
PhD. Thesis. Science Institute of Hacettepe University, Turkey.
(Unpublished).
Champbell, H. & Dean, C.B. 2014. The
consequences of proportional hazards based model selection. Statist. Med. 33:
1042-1056.
Cortese, G., Scheike,
T.H. & Martinussen, T. 2010. Flexible survival regression modeling. Stat.
Meth. in Medical Research 19: 5-28.
Cox, D.R. 1975. Partial likelihood. Biometrika 62:
269-276.
Cox, D.R. 1972. Regression models and
life-tables. J. R. Stat. Soc. Ser. B. Appl. Stat. 34: 187-220.
Fleming, T.R. & Harrington, D.P.
1991. Counting Processes and Survival Analysis. New York: Wiley.
Henderson, R. & Milner, A. 1991.
Aalen plots under proportional hazards. Appl. Statist. 40: 401-409.
Huffer, F.W. & McKeague,
I.W. 1991.
Weighted least squares estimation for Aalen's additive risk model.
J. Amer. Statist. Assoc. 86: 114-129.
Klein, P.J. & Moeschberger, M.L.
2003. Survival Analysis. Berlin- Heidelberg: Springer-Verlag Press.
Lawless J.F. 2013. Armitage Lecture 2011: The design and
analysis of life history studies. Statist. Med. 32: 2155-2172.
Lim, H.J. & Zhang, X. 2009.
Semi-parametric additive risk models: Application to injury duration study.
Accid. Anal. Prev. 41: 211-216.
Lin, D.Y. & Ying, Z. 1994. Semiparametric analysis of the additive risk model. Biometrika 81: 61-71.
Lin, D.Y. & Ying, Z. 1995.
Semiparametric analysis of general additive-multiplicative hazard models for
counting processes. Annals of Stat. 23: 1712-1734.
Martinussen, T. & Vansteelandt, S.
2013. On collapsibility and confounding bias in Cox and Aalen
regression model. Lifetime Data Anal. 19: 279-296.
Martinussen, T. & Scheike, T.H. 2006. Dynamic Regression Models for Survival Data. New York: Springer.
Martinussen, T. & Scheike, T.H. 2002. A flexible additive multiplicative hazard model. Biometrika 89: 283-298.
McKeague, I.W. 1988. Asymptotic theory for
weighted least squares estimators in Aalen's additive risk model.
Contemp. Math. 80: 139-152.
Oakes, D. 2013. An introduction to
survival models: In honor of Ross Prentice. Lifetime Data
Anal. 19: 442-462.
Scheike, T.H. & Zhang, M.J. 2003. Extension and applications of the Cox-Aalen survival model. Biometrics 59: 1033-1045.
Scheike, T.H. & Zhang, M.J. 2002. An additive-multiplicative Cox-Aalen model. Scand.
J. Statist. 28: 75-88.
Therneau, T. & Grambsch, P. 2000. Modelling
Survival Data: Extending the Cox Model. New York: Springer.
Vansteelandt, S.,
Martinussen, T. & Tchetgen, E.J.T. 2014. On adjustment for
auxiliary covariates in additive hazard models for the analysis of randomized
experiment. Biometrika 101: 237-244.
*Corresponding author; email: ebasar@gazi.edu.tr
|