Sains Malaysiana 46(3)(2017): 493–501
http://dx.doi.org/10.17576/jsm-2017-4603-18
Preparation and Characterization of Mg/TiO2 for Visible Light Photooxidative-Extractive
Deep Desulfurization
(Penyediaan dan Pencirian Mg/TiO2 untuk Proses Nyahsulfur Fotopengoksidaan-Pengekstrakan di bawah
Cahaya Nyata)
YEE CIA
YIN1,
CHONG
FAI
KAIT2*,
HAYYIRATUL
FATIMAH2,
CECILIA
WILFRED2,
MOHD FAISAL
B TAHA2 & NORMAWATI
BT MOHD YUNUS2
1Department of Chemical Engineering,
Universiti Teknologi
PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan,
Malaysia
2Department of Fundamental and Applied
Sciences, Universiti Teknologi
PETRONAS
32610 Seri Iskandar, Perak Darul
Ridzuan, Malaysia
Received: 21 January 2016/Accepted:
8 August 2016
ABSTRACT
A series of Mg/TiO2 photocatalysts were prepared using aqueous wet impregnation
method at different Mg loading followed by calcination at different
temperatures for 1 h duration. The photocatalysts
were characterized using thermal gravimetry,
Fourier-transform infrared spectroscopy, x-ray diffraction, field
emission scanning electron microscopy and high-resolution transmission
electron microscopy. The photocatalysts
were investigated for photooxidative-extractive deep desulfurization of model oil
containing dibenzothiophene at room temperature
and under visible light irradiation. The model oil containing 100
ppm S was photooxidized followed by extraction using imidazolium-phosphate
ionic liquids at room temperature. The best performing photocatalyst was 0.25 wt. % Mg/TiO2 calcined
at 400°C (0.25Mg400), in which 98.4% of dibenzothiophene
(3.070 mmol DBT per g photocatalyst)
was converted to dibenzothiophene sulfone.
The highest extraction efficiency of 97.8% (0.01525 mmol
S per mL ionic liquid) was displayed by 1,2-diethylimidazolium
diethylphosphate.
Keywords: Desulfurization;
Mg/TiO2; oxidation; photocatalyst;
visible light
ABSTRAK
Suatu siri Mg/TiO2 fotomangkin telah disediakan menggunakan kaedah impregnasi basah akuas dengan
komposisi Mg yang berlainan
diikuti dengan
pengkalsinan selama 1 jam pada suhu yang berlainan. Pencirian fotomangkin tersebut dijalankan menggunakan termogravimetri, spektroskopi transformasi Fourier inframerah,
pembelauan sinar-X, pemancaran medan
mikroskopi imbasan
elektron dan mikroskopi
transmisi elektron
beresolusi tinggi. Seterusnya, fotomangkin tersebut dikaji untuk proses nyahsulfur fotopengoksidaan-pengekstrakan daripada
model minyak diesel yang mengandungi
dibenzotiofen pada
suhu bilik dan
di bawah sinaran
cahaya nyata. Model minyak mengandungi 100 ppm S yang
difoto-oksidakan diikuti
dengan proses pengekstrakan menggunakan bendalir ionik imidazolium fosfat pada suhu bilik.
Fotomangkin 0.25 % bt.
Mg/TiO2 yang dikalsin
pada 400°C menunjukkan
prestasi yang terbaik dengan 98.4% dibenzotiofen (3.070
mmol DBT per g fotomangkin)
ditukar kepada
dibenzotiofen sulfon. Tahap tertinggi pengekstrakan yang tercapai adalah 97.8% (0.01525 mmol S per
mL bendalir ionik)
yang ditunjukkan oleh 1,2-dietilimidazolium dietilfosfat.
Kata kunci: Cahaya
nyata; fotomangkin;
Mg/TiO2; nyahsulfur;
pengoksidaan
REFERENCES
Abdel-Wahab,
A.A. & Gaber, A.E.M. 1998. TiO2-photocatalytic
oxidation of selected heterocyclic sulfur compounds. Journal
of Photochemistry and Photobiology A: Chemistry 114(3): 213-218.
Afshar, S., Jahromi, H.S., Jafari,
N., Ahmadi, Z. & Hakamizadeh, M. 2011. Degradation of malachite green oxalate by UV and visible lights irradiation
using Pt/TiO2/SiO2 nanophotocatalyst. Scientia Iranica
F 18(3): 772-779.
An’amt, M.N., Huang, N.M., Radiman, S., Lim,
H.N. & Muhamad, M.R. 2014. Triethanolamine solution for rapid
hydrothermal synthesis of titanate nanotubes.
Sains Malaysiana 43(1):
137-144.
Avasarala, B.K., Tirukkovalluri,
S.R. & Bojja, S. 2011. Photocatalytic
degradation of monocrotophos pesticide
- An endocrine disruptor by magnesium doped titania.
Journal of Hazardous Materials 186: 1234-1240.
Campos-Martin, J.M., Capel-Sanchez, M.C., Perez-Presas, P. & Fierro, J.L.G. 2010. Oxidative
processes of desulfurization of liquid fuels. J. Chem. Technol.
Biotechnol. 85: 879-890.
Carabineiro, S.A.,
Bogdanchikova, N., Pestryakov,
A., Tavares, P.B., Fernandes, L.S.G. &
Figueiredo, J.L. 2011. Gold nanoparticles
supported on magnesium oxide for CO oxidation. Nanoscale
Res. Lett. 6: 435.
Choi, J., Park, H. & Hoffman, M. 2010. Combinatorial
doping of TiO2 with
Platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve
enhanced photocatalytic activity with visible light irradiation.
Journal of Materials Research 25: 149-158.
Clark,
J. 2005. Thermal stability of the Group 2 carbonates and nitrates.
Chemguide.
http://www.chemguide.co.uk/inorganic/ group2/thermstab.html.
EPA. 2011. EPA Gives the Green Light on Diesel Sulfur Rule. Press Release, United States Environmental Protection Agency.
Feng, H., Yu, L.E. & Zhang, M. 2013. Ultrasonic
synthesis and photocatalytic performance of metal-ions doped TiO2
catalysts under solar light irradiation. Materials
Research Bulletin 48: 72-681.
Ganguly, A.,
Trinh, P., Ramanujachary, K.V., Ahmad,
T., Mugweru, A. & Ganguli, A.L.
2011. Reverse mi-cellar based synthesis of ultrafine MgO nanoparticles (8-10 nm): Characterization and catalytic
properties, J. Colloid Interf. Sci.
353: 137-142.
Heidari, H.,
Abedini, M., Nemati,
A. & Amini, M.M. 2009. Nanocrystalline magnesium oxide as a versatile heterogeneous
catalyst for the Meerwein-Ponndorf-Verley
reduction of cyclohexanone into cyclohexanol:
Effect of preparation method of magnesium oxide on yield. Catal. Lett. 130: 266-270.
Hwang, K.J., Yoo, S.J., Jung, S.H., Park,
D.W., Kim, S.I. & Lee, J.W. 2009. Synthesis
and characterization of nanostructured titania films for dye-sensitized solar cells. Bull.
Korean Chem. Soc. 30: 172-176.
Ileperuma, O.A.,
Tennakone, K. & Dissanayake,
W.D.D.P. 1990. Photocatalytic behaviour of metal doped
titanium dioxide: Studies on the photochemical synthesis of ammonia
on Mg/ TiO2 catalyst
systems. Applied Catalysis 62: L1-L5.
Jiang, Z., Lu, H., Zhang, Y. & Li, C. 2011a. Oxidative desulfurization of fuel oils. Chinese Journal
of Catalysis 32(5): 707-715.
Jiang, Y., Zhu, W., Li, H., Yin, S., Liu, H. & Xie, Q. 2011b. Oxidative
desulfurization of fuels catalyzed by fenton-like
ionic liquids at room temperature. ChemSusChem. 4(3): 399-403.
Khalik, W.F.,
Ho, L.N., Ong, S.A., Wong, Y.S., Yusoff, N.A. & Ridwan,
F. 2015. Decolorization and mineralization of batik wastewater through solar photocatalytic
process. Sains Malaysiana 44(4): 607-612.
Kim, H.W., Shim, S.H. & Lee, C. 2006. Temperature-controlled synthesis of MgO
nanorods. J. Korean Phys. Soc. 49(2): 628-631.
Kudo, A., Niishiro, R., Iwase, A. &
Kato, H. 2007. Effects of doping of metal cations on morphology,
activity and visible light response of photocatalysts.
Chemical Physics 339: 104-110.
Linsebigler, A.L.,
Lu, C.Q. & Yates, J.T. 1995. Photocatalysis
on TiO2 surfaces: Principles, mechanisms,
and selected results. Chem. Rev. 95: 735-758.
Lu, C.H., Wu, W.H. & Kale, R.B. 2008. Microemulsion-mediated
hydrothermal synthesis of photocatalytic TiO2 powders.
J. Hazard. Mater. 154(1-3): 649-654.
Matsuzawa, S., Tanaka, J., Sato, S. & Ibusuki,
T. 2002. Photocatalytic oxidation of dibenzothiophenes
in acetonitrile using TiO2: Effect of hydrogen peroxide and ultrasound
irradiation. Journal of Photochemistry and Photobiology A: Chemistry
149(1-3): 183-189.
Mc
Kelvy, M.J., Sharma, R., Andrew, A.V.G., Carpenter, R.W. & Streib, K. 2001. Magnesium
hydroxide dehydroxylation: in situ
nanoscale observations of lamellar nucleation and growth. Chem.
Mater. 13(3): 921-926.
Nakagawa, I. & Walter, J.L. 1969. Optically active crystal vibrations of the alkali-metal nitrate.
J. Chem. Phys. 51(4): 1389-1397.
Parra, R., Góes,
M.S., Castro, M.S., Longo, E., Bueno, P.R. & Varela, J.A. 2008. Reaction pathway to the synthesis
of anatase via the chemical modification
of titanium isopropoxide with acetic acid.
Chem. Mater. 20: 143-150.
Peng, S., Li, Y., Jiang, F., Lu, G. & Li, S. 2004. Effect of Be2+ doping TiO2 on
its photocatalytic activity. Chemical Physics Letters
398: 235-239.
Ranjit, K.T. & Klabunde, K.J. 2005. Amphiphilic templating of magnesium hydroxide. Langmuir
21: 12386-12394.
Su, Y., Wei, H., Zhou, Z., Yang, Z., Wei, L. & Zhang, Y. 2011. Rapid synthesis and
characterization of magnesium oxide nanocubes
via DC arc discharge. Mater.
Lett. 65: 100-103.
Tao, H., Nakazato, T. & Sato, S. 2009. Energy-efficient ultra-deep desulfurization
of kerosene based on selective photooxidation
and adsorption. Fuel 88(10): 1961-1969.
Wang, S. &. Zhou, S. 2010. Titania deposited on soft magnetic activated carbon as a magnetically
separable photocatalyst with enhanced
activity. Applied Surface Science 256(21): 6191-6198.
Wongpisutpaisan, N., Vittayakorn, N., Ruangphanit, A.
& Pecharapa, W. 2013. Cu-doped TiO2
nanopowders synthesized by sonochemical-assisted
process. Sains Malaysiana
42(2): 75-181.
Yuan, Y.S., Wong,
M.S. & Wang, S.S. 1996.
Mechanical behavior of MgO whisker reinforced
(Bi,Pb)2Sr2Ca2Cu3Oy
high-temperature superconducting composite. J. Mater. Res. 11(7):
1645-1652.
Zaid, H.F.M. 2011.
Desulfurization of crude oil using imidazolium-based phosphate ionic
liquids. MSc Thesis, Universiti
Teknologi PETRONAS (Unpublished).
Zaid, H.F.M.,
Chong, F.K. & Mutalib, M.I.A. 2015. Photooxidative-extractive deep desulfurization
of diesel using Cu-Fe/TiO2 and eutectic ionic liquid.
Fuel 156: 54-62.
Zhang, G., Yu,
F. & Wang, R. 2009a.
Research advances in oxidative desulphurization technologies for
the production of low sulfur fuel oils. Petroleum & Coal
51(3): 197-207.
Zhang, J., Zhang,
Y., Lei, Y. & Pan, C. 2011. Photocatalytic and degradation mechanisms of anatase TiO2: A HRTEM study. Catal. Sci.
Technol. 1: 273-278.
Zhang, J., Zhu, W., Li, H., Jiang,
W., Jiang, Y., Huang, W. & Yan, Y. 2009b. Deep
oxidative desulfurization of fuels by Fenton-like reagent in ionic
liquids. Green Chemistry 11(11): 1801-1807.
Zhao, Y., Hao, Y.T. & Li, F.T. 2011. Photocatalytic
oxidation desulfurization of fuel using nano-TiO2 in
ionic liquid. Adv. Mater. Res. 282-283: 599-602.
*Corresponding author; email: chongfaikait@utp.edu.my
|