Sains Malaysiana 46(4)(2017): 537–543
http://dx.doi.org/10.17576/jsm-2017-4604-04
Soil Investigation at
Wet World Hot Spring Complex for Future Development using Active
Multichannel Analysis of Surface Waves
(Penyelidikan Tanah
di Kompleks Mata Air Panas Wet World bagi Pembangunan Masa Hadapan
menggunakan Analisis Pelbagai Saluran Aktif Gelombang Permukaan)
AMIN
E.
KHALIL1*,
MOHD
NAWAWI1,
M.
HARIRI
ARIFIN1,2,3,
FATHI
M.
ABDULLAH1,4,
J.S.
KAYODE1,
NURADDEEN
USMAN1
& ARISONA1
1Geology Department, Faculty
of Science, Helwan University, Egypt
2School of Physics, Universiti
Sains Malaysia, 11800 USM, Penang, Pulau Pinang, Malaysia
3Geology Programme, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM, Bangi, Selangor
Darul Ehsan, Malaysia
4Geology Department, Faculty
of Applied Science, Taiz University, Taiz 6803, Yemen
Received: 8 May 2016/Accepted:
9 September 2016
ABSTRACT
Development of hot spring
touristic projects receives more interest in Malaysia in recent
years since the country has a high potential of hot springs that
are vital to the economy. However, such developmental activities
could produce negative impacts if not accompanied with adequate
knowledge of the subsurface conditions. Active multichannel analysis
of surface waves (MASW) was applied to determine
the subsurface shear wave velocities and Vs30. The inverted shear
waves velocity models have then presented in both vertical cross-sectional
plots and depth slices maps. Depth slices were chosen at about 5,
18.5 m and 32 m depths. Model obtained showed that the soil is stiffer
near the highway side and turns to be softer as we go away in the
scrub direction. Vs30 is also estimated and mapped to show the quality
of the soil. Inverted parameters showed that the soil at the site
ranges from soft soil to stiff one. Also, the result obtained proposed
that the surface occurrence of the hot spring might be a result
of intersection of faulted segments, where hot spring is located
near the intersection points. Furthermore, the model helped in proposing
a suitable for complex extension. The proposed is chosen such that
it minimize any possible effects on the geothermal resources at
the site.
Keywords: Hot springs;
MASW; Pedas; shear wave velocity; soil properties
ABSTRAK
Pembangunan projek pelancongan
mata air panas menerima minat yang lebih di Malaysia dalam beberapa
tahun kebelakangan kerana negara mempunyai potensi tinggi daripada
mata air panas yang penting kepada ekonomi. Walau bagaimanapun,
aktiviti pembangunan ini boleh menghasilkan kesan negatif jika tidak
disertakan dengan pengetahuan yang mencukupi tentang keadaan subpermukaan.
Analisis pelbagai saluran aktif oleh gelombang permukaan (MASW) telah digunakan untuk menentukan
kelajuan gelombang subpermukaan ricih dan Vs30. Model halaju gelombang
ricih songsang ini telah dibentangkan dalam kedua-dua plot hirisan
lintang menegak dan hirisan kedalaman peta. Hirisan kedalaman telah
dipilih pada 5, 18.5 m dengan kedalaman 32 m. Model yang diperoleh
menunjukkan bahawa tanah adalah lebih keras berhampiran lebuh raya
tetapi bertukar lembut ke arah belukar. Vs30 juga dianggar dan dipetakan
untuk menunjukkan kualiti tanah. Parameter songsang menunjukkan
tanah di tapak ini berjulat daripada tanah lembut kepada tanah keras.
Selain itu, keputusan yang diperoleh mencadangkan bahawa permukaan
mata air panas ini mungkin terjadi hasil daripada persilangan segmen
tersesar dengan mata air panas terletak berhampiran dengan titik
persimpangan. Selain itu, model ini membantu dalam mencadangkan
pengembangan kompleks yang sesuai. Cadangan ini dipilih kerana ia
meminimumkan sebarang kesan pada sumber geoterma di tapak ini.
Kata kunci: Halaju gelombang ricih; MASW;
mata air panas; Pedas; sifat tanah
REFERENCES
Alexander, J.B. 1968. The geology and mineral resources of the neighborhood
of Bentong, Pahang and adjoining portions of Selangor and Negri
Sembilan. Mal. Geol. Survey Mem. (NS) 8: 1-250.
Foti, S., Lancellotta, R., Sambuelli, L. & Socco, L. 2000. Notes
on fk analysis of surface waves. Annali di Geofisica 43(6):
1199-1209. http://doi.org/10.4401/ag-3683
Gabriels, P., Snieder, R. & Nolet, G. 1987. In situ measurements
of shear-wave velocity in sediments using higher mode rayleigh waves.
Geophys. Prospect. 35: 187-196.
Gosar, A., Stopar, R. & Roser, J. 2008. Comparative test of active
and passive multichannel analysis of surface waves (MASW) methods
and microtremor HVSR method. RMZ - Materials and Geoenvironment
55(1): 41-66.
Hassan Baioumy, Mohd Nawawi, Karl Wagner & Mohd Hariri Arifin.
2014. Geochemistry and geothermometry of non-volcanic hot springs
in West Malaysia. Journal of Volcanology and Geothermal Research
290: 12-22. doi:10.1016/j.jvolgeores.2014.11.014.
Hutchison, C.S. & Tan, D.N.K. 2009. Geology of Peninsular
Malaysia. Kuala Lumpur: University of Malaya & Geological
Society of Malaysia. p. 480.
Khalid, B.N. & Derksen, S.J. 1971. Geology of Eastern half of
sheet 103. Ann. Report Geological Survey Malaysia. File Report.
Kuching: Min. Agriculture and Land, Gov. Printing Office.
Khoo, K.K. 1972. Geology of Bahau area. Sheet 104 (Kuala Pilah) Negri
Sembilan. Ann. Rep. Geol. Survey Malaysia. pp. 93-103.
Long, M. & Donohue, S. 2007. In situ shear wave velocity
from multichannel analysis of surface waves (MASW) tests at eight
Norwegian research sites. Canadian Geotechnical Journal 44(5):
533-544. doi:10.1139/T07-013.
Miller, R.D., Xia, J., Park, C., Ivanov, J. & Williams, E. 1999.
Using MASW to map Bedrock in Olathe, Kansas. 69th Ann. Internat.
Mtg. 99: 433-436. doi:10.1190/1.1821045.
Nolet, G. 1981. Linearized
inversion of (teleseismic) data. In The Solution of the Inverse
Problem in Geophysical Interpretation, edited by Cassinis, R.
New York: Plenum Press. pp. 9-37.
Parker, H.E. 2002. Multi-channel
analysis of surface waves (MASW) in Karst terrain: Implications
for detecting subsidence features and lineaments. University of
Georgia. Thesis and Dissertations (Unpublished).
Park, C.B., Ivanov, J.,
Miller, R.D., Xia, J. & Ryden, N. 1999a. Multichannel analysis
of surface waves (MASW) for pavement: Feasibility test. Proceedings
of the 5th SEGJ International Symposium, Tokyo, pp. 25-30.
Park, C.B., Miller, R.D.
& Xia, J. 1999b. Multi-channel analysis of surface waves (MASW).
Geophysics 64(3): 800-808.
Park, C.B., Miller, R.D.,
Xia, J., Hunter, J.A. & Harris, J.B. 1999c. Higher mode observation
by the MASW method. SEG Technical Program Expanded Abstracts
1999. pp. 524-527. doi: 10.1190/1.1821070.
Park, C.B., Miller, R.D.
& Xia, J. 2001. Offset and resolution of dispersion curve in
multichannel analysis of surface waves (MASW). Symposium on the
Application of Geophysics to Engineering and Environmental Problems,
October: SSM4- SSM4. doi:10.4133/1.2922953.
Richart, F.E., Hall,
J.R. & Woods, R.D. 1970. Vibrations of Soils and Foundations.
Englewood Cliffs: Prentice Hall.
Samsudin, A.R., Hamzah,
U., Rahman, R.A., Siwar, C., Jani, M.F.M. & Othman, R. 1997.
Thermal springs of Malaysia and their potential development. Journal
of Asian Earth Sciences 15(2/3): 275-284.
Seshunarayana, T. &
Sundararajan, N. 2004. Multichannel analysis of surface waves (MASW)
for mapping shallow subsurface layers - A case study, Jabalpur,
India. 5th Conference & Exposition on Petroleum Geophysics,
Hyderabad, India. pp. 642-646.
Sum, C.W., Irawan, S.
& Fathaddin, M.T. 2010. Hot springs in the Malay Peninsula.
Proceedings World Geothermal Congress. Bali, Indonesia.
Takeuchi, H. & Saito,
M. 1972. Seismic surface waves. In Methods in Computational Physics,
edited by B.A. Bolt, New York: Academic Press. 11: 217-295.
Tokeshi, K., Harutoonian,
P., Leo, C.J. & Liyanapathirana, S. 2013. Use of surface waves
for geotechnical engineering applications in Western Sydney. Advances
in Geosciences 35(1): 37-44. doi:10.5194/adgeo-35-37-2013.
*Corresponding
author; email: aminwej@gmail.com
|