Sains Malaysiana 46(4)(2017): 537–543

http://dx.doi.org/10.17576/jsm-2017-4604-04

 

Soil Investigation at Wet World Hot Spring Complex for Future Development using Active Multichannel Analysis of Surface Waves

(Penyelidikan Tanah di Kompleks Mata Air Panas Wet World bagi Pembangunan Masa Hadapan menggunakan Analisis Pelbagai Saluran Aktif Gelombang Permukaan)

 

AMIN E. KHALIL1*, MOHD NAWAWI1, M. HARIRI ARIFIN1,2,3, FATHI M. ABDULLAH1,4,

J.S. KAYODE1, NURADDEEN USMAN1 & ARISONA1

 

1Geology Department, Faculty of Science, Helwan University, Egypt

 

2School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Pulau Pinang, Malaysia

 

3Geology Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia

 

4Geology Department, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen

 

Received: 8 May 2016/Accepted: 9 September 2016

 

ABSTRACT

Development of hot spring touristic projects receives more interest in Malaysia in recent years since the country has a high potential of hot springs that are vital to the economy. However, such developmental activities could produce negative impacts if not accompanied with adequate knowledge of the subsurface conditions. Active multichannel analysis of surface waves (MASW) was applied to determine the subsurface shear wave velocities and Vs30. The inverted shear waves velocity models have then presented in both vertical cross-sectional plots and depth slices maps. Depth slices were chosen at about 5, 18.5 m and 32 m depths. Model obtained showed that the soil is stiffer near the highway side and turns to be softer as we go away in the scrub direction. Vs30 is also estimated and mapped to show the quality of the soil. Inverted parameters showed that the soil at the site ranges from soft soil to stiff one. Also, the result obtained proposed that the surface occurrence of the hot spring might be a result of intersection of faulted segments, where hot spring is located near the intersection points. Furthermore, the model helped in proposing a suitable for complex extension. The proposed is chosen such that it minimize any possible effects on the geothermal resources at the site.

 

Keywords: Hot springs; MASW; Pedas; shear wave velocity; soil properties

 

ABSTRAK

Pembangunan projek pelancongan mata air panas menerima minat yang lebih di Malaysia dalam beberapa tahun kebelakangan kerana negara mempunyai potensi tinggi daripada mata air panas yang penting kepada ekonomi. Walau bagaimanapun, aktiviti pembangunan ini boleh menghasilkan kesan negatif jika tidak disertakan dengan pengetahuan yang mencukupi tentang keadaan subpermukaan. Analisis pelbagai saluran aktif oleh gelombang permukaan (MASW) telah digunakan untuk menentukan kelajuan gelombang subpermukaan ricih dan Vs30. Model halaju gelombang ricih songsang ini telah dibentangkan dalam kedua-dua plot hirisan lintang menegak dan hirisan kedalaman peta. Hirisan kedalaman telah dipilih pada 5, 18.5 m dengan kedalaman 32 m. Model yang diperoleh menunjukkan bahawa tanah adalah lebih keras berhampiran lebuh raya tetapi bertukar lembut ke arah belukar. Vs30 juga dianggar dan dipetakan untuk menunjukkan kualiti tanah. Parameter songsang menunjukkan tanah di tapak ini berjulat daripada tanah lembut kepada tanah keras. Selain itu, keputusan yang diperoleh mencadangkan bahawa permukaan mata air panas ini mungkin terjadi hasil daripada persilangan segmen tersesar dengan mata air panas terletak berhampiran dengan titik persimpangan. Selain itu, model ini membantu dalam mencadangkan pengembangan kompleks yang sesuai. Cadangan ini dipilih kerana ia meminimumkan sebarang kesan pada sumber geoterma di tapak ini.

 

Kata kunci: Halaju gelombang ricih; MASW; mata air panas; Pedas; sifat tanah

REFERENCES

Alexander, J.B. 1968. The geology and mineral resources of the neighborhood of Bentong, Pahang and adjoining portions of Selangor and Negri Sembilan. Mal. Geol. Survey Mem. (NS) 8: 1-250.

Foti, S., Lancellotta, R., Sambuelli, L. & Socco, L. 2000. Notes on fk analysis of surface waves. Annali di Geofisica 43(6): 1199-1209. http://doi.org/10.4401/ag-3683

Gabriels, P., Snieder, R. & Nolet, G. 1987. In situ measurements of shear-wave velocity in sediments using higher mode rayleigh waves. Geophys. Prospect. 35: 187-196.

Gosar, A., Stopar, R. & Roser, J. 2008. Comparative test of active and passive multichannel analysis of surface waves (MASW) methods and microtremor HVSR method. RMZ - Materials and Geoenvironment 55(1): 41-66.

Hassan Baioumy, Mohd Nawawi, Karl Wagner & Mohd Hariri Arifin. 2014. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia. Journal of Volcanology and Geothermal Research 290: 12-22. doi:10.1016/j.jvolgeores.2014.11.014.

Hutchison, C.S. & Tan, D.N.K. 2009. Geology of Peninsular Malaysia. Kuala Lumpur: University of Malaya & Geological Society of Malaysia. p. 480.

Khalid, B.N. & Derksen, S.J. 1971. Geology of Eastern half of sheet 103. Ann. Report Geological Survey Malaysia. File Report. Kuching: Min. Agriculture and Land, Gov. Printing Office.

Khoo, K.K. 1972. Geology of Bahau area. Sheet 104 (Kuala Pilah) Negri Sembilan. Ann. Rep. Geol. Survey Malaysia. pp. 93-103.

Long, M. & Donohue, S. 2007. In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites. Canadian Geotechnical Journal 44(5): 533-544. doi:10.1139/T07-013.

Miller, R.D., Xia, J., Park, C., Ivanov, J. & Williams, E. 1999. Using MASW to map Bedrock in Olathe, Kansas. 69th Ann. Internat. Mtg. 99: 433-436. doi:10.1190/1.1821045.

Nolet, G. 1981. Linearized inversion of (teleseismic) data. In The Solution of the Inverse Problem in Geophysical Interpretation, edited by Cassinis, R. New York: Plenum Press. pp. 9-37.

Parker, H.E. 2002. Multi-channel analysis of surface waves (MASW) in Karst terrain: Implications for detecting subsidence features and lineaments. University of Georgia. Thesis and Dissertations (Unpublished).

Park, C.B., Ivanov, J., Miller, R.D., Xia, J. & Ryden, N. 1999a. Multichannel analysis of surface waves (MASW) for pavement: Feasibility test. Proceedings of the 5th SEGJ International Symposium, Tokyo, pp. 25-30.

Park, C.B., Miller, R.D. & Xia, J. 1999b. Multi-channel analysis of surface waves (MASW). Geophysics 64(3): 800-808.

Park, C.B., Miller, R.D., Xia, J., Hunter, J.A. & Harris, J.B. 1999c. Higher mode observation by the MASW method. SEG Technical Program Expanded Abstracts 1999. pp. 524-527. doi: 10.1190/1.1821070.

Park, C.B., Miller, R.D. & Xia, J. 2001. Offset and resolution of dispersion curve in multichannel analysis of surface waves (MASW). Symposium on the Application of Geophysics to Engineering and Environmental Problems, October: SSM4- SSM4. doi:10.4133/1.2922953.

Richart, F.E., Hall, J.R. & Woods, R.D. 1970. Vibrations of Soils and Foundations. Englewood Cliffs: Prentice Hall.

Samsudin, A.R., Hamzah, U., Rahman, R.A., Siwar, C., Jani, M.F.M. & Othman, R. 1997. Thermal springs of Malaysia and their potential development. Journal of Asian Earth Sciences 15(2/3): 275-284.

Seshunarayana, T. & Sundararajan, N. 2004. Multichannel analysis of surface waves (MASW) for mapping shallow subsurface layers - A case study, Jabalpur, India. 5th Conference & Exposition on Petroleum Geophysics, Hyderabad, India. pp. 642-646.

Sum, C.W., Irawan, S. & Fathaddin, M.T. 2010. Hot springs in the Malay Peninsula. Proceedings World Geothermal Congress. Bali, Indonesia.

Takeuchi, H. & Saito, M. 1972. Seismic surface waves. In Methods in Computational Physics, edited by B.A. Bolt, New York: Academic Press. 11: 217-295.

Tokeshi, K., Harutoonian, P., Leo, C.J. & Liyanapathirana, S. 2013. Use of surface waves for geotechnical engineering applications in Western Sydney. Advances in Geosciences 35(1): 37-44. doi:10.5194/adgeo-35-37-2013.

 

 

*Corresponding author; email: aminwej@gmail.com

 

 

 

 

previous