Sains Malaysiana
46(4)(2017): 575–581
http://dx.doi.org/10.17576/jsm-2017-4604-09
Low Intensity Ultrasound Induced
Apoptosis in MCF-7 Breast Cancer Cell Lines
(Ultrabunyi Keamatan Rendah Aruhan Apoptosis dalam Jujukan Sel
Kanser Payudara
MCF-7)
SITI
P.M.
BOHARI*,
HAMIDREZA
ABOULKHEYR,
E.S.,
NUR
S.
JOHAN
& NURSYUHADA F. ZAINUDIN
Faculty of Biosciences
and Biomedical Engineering, Universiti
Teknologi Malaysia
81310 UTM Skudai, Johor Darul Takzim, Malaysia
Received: 26 November
2015/Accepted: 29 September 2016
ABSTRACT
According
to the World Cancer Research Fund International (WCRFI),
breast cancer is the most common type of cancer in women worldwide
with recorded 1.7 million new cases in 2012. The main line of treatments
is still limited to chemotherapy, surgery and radiotherapy which
could lead to a wide range of dangerous side effects. This study
was conducted to evaluate the effect of low intensity ultrasound
(LIUS) on cell proliferation, percentage
of living and dead cells and the induction of apoptosis on the MCF-7
cell line with CHO cells as the control for non-cancerous
group. In order to achieve the objective of this study, several
methods of cell-bioguided assays were
used including the MTT assay for cell proliferation, Live/Dead assay for the
determination of both live and dead cells and gene expression study
for the detection of apoptosis in the cells. The cytotoxicity and
Live/Dead assays data provided preliminary data that the LIUS has potential to induce apoptosis
in a wide population of breast cancer cells. Furthermore, the LIUS
treatment induced the expression of p53-mRNA at
a detectable level via qPCR analysis, indicating the activation
of apoptosis. In short, our study suggested LIUS dosage
used in this study could potentially show positive effects in the
induction of apoptosis selectively on the MCF-7 with less harm to the control
CHO cells.
Keywords:
Apoptosis; CHO cells; LIUS; MCF-7
cells; qPCR
ABSTRAK
Mengikut ‘World Cancer Research Fund International’ (WCRFI), kanser
payudara adalah
jenis kanser yang paling umum pada wanita
di seluruh dunia
dengan catatan rekod 1.7 juta kes baru pada
2012. Rawatan utama masih lagi terhad kepada
kimoterapi, pembedahan
dan radioterapi yang boleh membawa kepada
pelbagai kesan
sampingan berbahaya. Penyelidikan ini dijalankan untuk menilai kesan ultrabunyi
berkeamatan rendah
(LIUS)
pada pertumbuhan
sel, peratusan hidup dan mati
sel dan juga
pengaruhan ‘apoptosis’ pada jujukan sel MCF-7
dan CHO sebagai
kumpulan kawalan
sel bukan kanser.
Untuk mencapai
objektif di dalam kajian ini, beberapa
kaedah bioasai
berdasarkan sel telah digunakan termasuklah asai MTT untuk pertumbuhan sel, asai ‘Live/Dead’ untuk pengenalpastian hidup dan mati
sel dan juga
kajian ekspresi gen untuk pengesanan ‘apoptosis’ pada sel. Asai sitotoksiti dan ‘Live/Dead’ menggambarkan data awal bahawa LIUS berpotensi
untuk mengaruh
‘apoptosis’ di dalam populasi
yang besar bagi kanser
payudara. Tambahan
lagi, rawatan LIUS juga
berpotensi untuk
mengaruh ekspresi p53-mRNA
pada aras
yang dapat dikesan
melalui analisis qPCR yang
menunjukkan pengaktifan
‘apoptosis. Kesimpulannya, kajian
kami mencadangkan dos LIUS yang
digunakan dalam
kajian ini berpotensi
dalam menunjukkan
kesan positif dalam
pengaruhan ‘apoptosis’ pilihan
pada sel MCF-7
dengan sedikit
kemudaratan kepada sel CHO.
Kata kunci: Apoptosis; LIUS;
qPCR;
sel CHO; sel
MCF-7
REFERENCES
Bohari, S.P.M., Hukins, D.W.L. & Grover,
L.M. 2011. Effect of calcium alginate
concentration on viability and proliferation of encapsulated fibroblasts.
Bio-Medical Materials and Engineering 21(3): 159-170.
Cambier, D., D’Herde, K., Witvrouw,
E., Beck, M., Soenens, S. & Vanderstraeten,
G. 2001. Therapeutic ultrasound: Temperature increase
at different depths by different modes in a human cadaver. Journal
of Rehabilitation Medicine 33(5): 212-215.
Chumakova, O.V., Liopo, A.V., Evers, B.M. &
Esenaliev, R.O. 2006. Effect
of 5-fluorouracil, optison and ultrasound
on MCF-7 cell viability. Ultrasound in Medicine &
Biology 32(5): 751-758.
Dubinsky,
T.J., Cuevas, C., Dighe, M.K., Kolokythas,
O. & Hwang, J.H. 2008. High-intensity focused ultrasound: Current potential
and oncologic applications. American Journal of Roentgenology 190(1): 191-199.
Feng,
Y., Tian, Z. & Wan, M. 2010. Bioeffects
of low-intensity ultrasound in vitro apoptosis, protein profile
alteration, and potential molecular mechanism. Journal of Ultrasound
in Medicine 29(6): 963-974.
Garg,
A.K. & Buchholz, T.A. 2015. Influence of neoadjuvant chemotherapy on radiotherapy
for breast cancer. Annals of Surgical Oncology 22(5): 1434-1440.
Guo, W.
2014.
Concise review: Breast cancer stem cells: Regulatory networks, stem
cell niches, and disease relevance. Stem Cells Translational
Medicine 3(8): 942-948.
Hortobagyi, G.N., de la Garza Salazar,
J., Pritchard, K., Amadori, D., Haidinger, R., Hudis, C.A., Hussein
Khaled; Liu, M-C., Martin, M. & Namer,
M. 2005. The global breast cancer burden: Variations in epidemiology
and survival. Clinical Breast Cancer 6(5): 391-401.
Hui,
L., Zheng, Y., Yan, Y., Bargonetti, J.
& Foster, D.A. 2006.
Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated
phospholipase D activity and contributes to survival signals generated
by phospholipase D. Oncogene 25(55): 7305-7310.
Hupp,
T., Lane, D. & Ball, K. 2000. Strategies for
manipulating the p53 pathway in the treatment of human cancer.
Biochem.
J. 352: 1-17.
Johns, L.D. 2002. Nonthermal effects of therapeutic ultrasound: The frequency
resonance hypothesis. Journal of Athletic Training 37(3):
293-299.
Komen, J., Wolbers, F., Franke, H.R., Andersson,
H., Vermes, I. & van den Berg, A. 2008. Viability analysis and
apoptosis induction of breast cancer cells in a microfluidic device:
Effect of cytostatic drugs. Biomedical Microdevices
10(5): 727-737.
Larina, I.V.,
Evers, B.M. & Esenaliev, R.O. 2005. Optimal drug and gene
delivery in cancer cells by ultrasound-induced cavitation. Anticancer
Research 25(1A): 149-156.
Li,
Y., Wang, P., Zhao, P., Zhu, S., Wang, X. & Liu, Q. 2012. Apoptosis induced by
sonodynamic treatment by protoporphyrin
IX on MDA-MB-231 cells. Ultrasonics
52(4): 490-496.
Luo,
L., Molnar, J., Ding, H., Lv, X. &
Spengler, G. 2006.
Ultrasound absorption and entropy production in biological tissue:
A novel approach to anticancer therapy. Diagnostic Pathology
1(1): 35.
Ninomiya Kazuaki,
Takahiro Yamashita, Shinya Kawabata & Nobuaki Shimizu. 2014. Targeted and ultrasound-triggered
drug delivery using liposomes co-modified with cancer cell-targeting
aptamers and a thermosensitive polymer. Ultrasonics
Sonochemistry 21(4): 1482-1488.
Paliwal, S. & Mitragotri, S. 2008. Therapeutic opportunities
in biological responses of ultrasound. Ultrasonics
48(4): 271-278.
Pallant, J. 2007. SPSS Survival Manual. 3rd ed. Berkshire: McGraw-Hill.
Park,
S.M., Kim, M.S., Park, S-J., Park, E.S., Choi, K-S., Kim, Y-S. & Kim, H.R. 2013.
Novel temperature-triggered liposome with high stability: Formulation,
in vitro evaluation, and in vivo study combined with
high-intensity focused ultrasound (HIFU). Journal of Controlled
Release 170(3): 373-379.
Shibaguchi Hirotomo, Hirofumi Tsuru, Motomu Kuroki & Masahide Kuroki. 2011. Sonodynamic cancer therapy: A non-invasive and repeatable
approach using low-intensity ultrasound with a sonosensitizer.
Anticancer Research 31(7): 2425-2429.
Tsao, H., Zhang, X., Majewski, P. & Haluska, F.G.
1999. Mutational and expression analysis of the
p73 gene in melanoma cell lines. Cancer Research 59(1):
172-174.
Uludag, H.
& Sefton, M.V. 1990.
Colorimetric assay for cellular-activity in microcapsules.
Biomaterials 11(9): 708-712.
Wang,
H., Wang, X., Wang, P., Zhang, K., Yang, S. & Liu, Q. 2013. Ultrasound enhances
the efficacy of chlorin E6- mediated photodynamic
therapy in MDA-MB-231 cells. Ultrasound in Medicine & Biology
39(9): 1713-1724.
Watanabe, Akihiro, Takeshi
Takatera, Toshio Sato, S Takeuchim,
Hiroyuki Nishimura & Norimichi Kawashima.
2002. Study on suppression mechanism of cancer cells proliferation
by ultrasound exposure for minimally invasive cancer treatment.
Paper read at Ultrasonics Symposium,
2002. Proceedings. IEEE.
Wood,
A.K.W. & Sehgal, C.M. 2015. A review of low-intensity ultrasound
for cancer therapy. Ultrasound in Medicine & Biology
41(4): 905-928.
Wu,
J. & Nyborg, W. 2006. Emerging
Therapeutic Ultrasound. Singapore: World Scientific Publishing
Co. Pte. Ltd.
*Corresponding author;
email: pauliena@utm.my
|