Sains Malaysiana 46(4)(2017): 575–581

http://dx.doi.org/10.17576/jsm-2017-4604-09

 

Low Intensity Ultrasound Induced Apoptosis in MCF-7 Breast Cancer Cell Lines

(Ultrabunyi Keamatan Rendah Aruhan Apoptosis dalam Jujukan Sel Kanser Payudara

MCF-7)

 

SITI P.M. BOHARI*, HAMIDREZA ABOULKHEYR, E.S., NUR S. JOHAN & NURSYUHADA F. ZAINUDIN

 

Faculty of Biosciences and Biomedical Engineering, Universiti Teknologi Malaysia

81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

Received: 26 November 2015/Accepted: 29 September 2016

 

ABSTRACT

According to the World Cancer Research Fund International (WCRFI), breast cancer is the most common type of cancer in women worldwide with recorded 1.7 million new cases in 2012. The main line of treatments is still limited to chemotherapy, surgery and radiotherapy which could lead to a wide range of dangerous side effects. This study was conducted to evaluate the effect of low intensity ultrasound (LIUS) on cell proliferation, percentage of living and dead cells and the induction of apoptosis on the MCF-7 cell line with CHO cells as the control for non-cancerous group. In order to achieve the objective of this study, several methods of cell-bioguided assays were used including the MTT assay for cell proliferation, Live/Dead assay for the determination of both live and dead cells and gene expression study for the detection of apoptosis in the cells. The cytotoxicity and Live/Dead assays data provided preliminary data that the LIUS has potential to induce apoptosis in a wide population of breast cancer cells. Furthermore, the LIUS treatment induced the expression of p53-mRNA at a detectable level via qPCR analysis, indicating the activation of apoptosis. In short, our study suggested LIUS dosage used in this study could potentially show positive effects in the induction of apoptosis selectively on the MCF-7 with less harm to the control CHO cells.

 

Keywords: Apoptosis; CHO cells; LIUS; MCF-7 cells; qPCR

 

ABSTRAK

Mengikut ‘World Cancer Research Fund International’ (WCRFI), kanser payudara adalah jenis kanser yang paling umum pada wanita di seluruh dunia dengan catatan rekod 1.7 juta kes baru pada 2012. Rawatan utama masih lagi terhad kepada kimoterapi, pembedahan dan radioterapi yang boleh membawa kepada pelbagai kesan sampingan berbahaya. Penyelidikan ini dijalankan untuk menilai kesan ultrabunyi berkeamatan rendah (LIUS) pada pertumbuhan sel, peratusan hidup dan mati sel dan juga pengaruhan ‘apoptosis’ pada jujukan sel MCF-7 dan CHO sebagai kumpulan kawalan sel bukan kanser. Untuk mencapai objektif di dalam kajian ini, beberapa kaedah bioasai berdasarkan sel telah digunakan termasuklah asai MTT untuk pertumbuhan sel, asai ‘Live/Dead’ untuk pengenalpastian hidup dan mati sel dan juga kajian ekspresi gen untuk pengesanan ‘apoptosis’ pada sel. Asai sitotoksiti dan ‘Live/Dead’ menggambarkan data awal bahawa LIUS berpotensi untuk mengaruh ‘apoptosis’ di dalam populasi yang besar bagi kanser payudara. Tambahan lagi, rawatan LIUS juga berpotensi untuk mengaruh ekspresi p53-mRNA pada aras yang dapat dikesan melalui analisis qPCR yang menunjukkan pengaktifan ‘apoptosis. Kesimpulannya, kajian kami mencadangkan dos LIUS yang digunakan dalam kajian ini berpotensi dalam menunjukkan kesan positif dalam pengaruhan ‘apoptosis’ pilihan pada sel MCF-7 dengan sedikit kemudaratan kepada sel CHO.

 

Kata kunci: Apoptosis; LIUS; qPCR; sel CHO; sel MCF-7

 

 

REFERENCES

 

Bohari, S.P.M., Hukins, D.W.L. & Grover, L.M. 2011. Effect of calcium alginate concentration on viability and proliferation of encapsulated fibroblasts. Bio-Medical Materials and Engineering 21(3): 159-170.

Cambier, D., D’Herde, K., Witvrouw, E., Beck, M., Soenens, S. & Vanderstraeten, G. 2001. Therapeutic ultrasound: Temperature increase at different depths by different modes in a human cadaver. Journal of Rehabilitation Medicine 33(5): 212-215.

Chumakova, O.V., Liopo, A.V., Evers, B.M. & Esenaliev, R.O. 2006. Effect of 5-fluorouracil, optison and ultrasound on MCF-7 cell viability. Ultrasound in Medicine & Biology 32(5): 751-758.

Dubinsky, T.J., Cuevas, C., Dighe, M.K., Kolokythas, O. & Hwang, J.H. 2008. High-intensity focused ultrasound: Current potential and oncologic applications. American Journal of Roentgenology 190(1): 191-199.

Feng, Y., Tian, Z. & Wan, M. 2010. Bioeffects of low-intensity ultrasound in vitro apoptosis, protein profile alteration, and potential molecular mechanism. Journal of Ultrasound in Medicine 29(6): 963-974.

Garg, A.K. & Buchholz, T.A. 2015. Influence of neoadjuvant chemotherapy on radiotherapy for breast cancer. Annals of Surgical Oncology 22(5): 1434-1440.

Guo, W. 2014. Concise review: Breast cancer stem cells: Regulatory networks, stem cell niches, and disease relevance. Stem Cells Translational Medicine 3(8): 942-948.

Hortobagyi, G.N., de la Garza Salazar, J., Pritchard, K., Amadori, D., Haidinger, R., Hudis, C.A., Hussein Khaled; Liu, M-C., Martin, M. & Namer, M. 2005. The global breast cancer burden: Variations in epidemiology and survival. Clinical Breast Cancer 6(5): 391-401.

Hui, L., Zheng, Y., Yan, Y., Bargonetti, J. & Foster, D.A. 2006. Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene 25(55): 7305-7310.

Hupp, T., Lane, D. & Ball, K. 2000. Strategies for manipulating the p53 pathway in the treatment of human cancer. Biochem. J. 352: 1-17.

Johns, L.D. 2002. Nonthermal effects of therapeutic ultrasound: The frequency resonance hypothesis. Journal of Athletic Training 37(3): 293-299.

Komen, J., Wolbers, F., Franke, H.R., Andersson, H., Vermes, I. & van den Berg, A. 2008. Viability analysis and apoptosis induction of breast cancer cells in a microfluidic device: Effect of cytostatic drugs. Biomedical Microdevices 10(5): 727-737.

Larina, I.V., Evers, B.M. & Esenaliev, R.O. 2005. Optimal drug and gene delivery in cancer cells by ultrasound-induced cavitation. Anticancer Research 25(1A): 149-156.

Li, Y., Wang, P., Zhao, P., Zhu, S., Wang, X. & Liu, Q. 2012. Apoptosis induced by sonodynamic treatment by protoporphyrin IX on MDA-MB-231 cells. Ultrasonics 52(4): 490-496.

Luo, L., Molnar, J., Ding, H., Lv, X. & Spengler, G. 2006. Ultrasound absorption and entropy production in biological tissue: A novel approach to anticancer therapy. Diagnostic Pathology 1(1): 35.

Ninomiya Kazuaki, Takahiro Yamashita, Shinya Kawabata & Nobuaki Shimizu. 2014. Targeted and ultrasound-triggered drug delivery using liposomes co-modified with cancer cell-targeting aptamers and a thermosensitive polymer. Ultrasonics Sonochemistry 21(4): 1482-1488.

Paliwal, S. & Mitragotri, S. 2008. Therapeutic opportunities in biological responses of ultrasound. Ultrasonics 48(4): 271-278.

Pallant, J. 2007. SPSS Survival Manual. 3rd ed. Berkshire: McGraw-Hill.

Park, S.M., Kim, M.S., Park, S-J., Park, E.S., Choi, K-S., Kim, Y-S. & Kim, H.R. 2013. Novel temperature-triggered liposome with high stability: Formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). Journal of Controlled Release 170(3): 373-379.

Shibaguchi Hirotomo, Hirofumi Tsuru, Motomu Kuroki & Masahide Kuroki. 2011. Sonodynamic cancer therapy: A non-invasive and repeatable approach using low-intensity ultrasound with a sonosensitizer. Anticancer Research 31(7): 2425-2429.

Tsao, H., Zhang, X., Majewski, P. & Haluska, F.G. 1999. Mutational and expression analysis of the p73 gene in melanoma cell lines. Cancer Research 59(1): 172-174.

Uludag, H. & Sefton, M.V. 1990. Colorimetric assay for cellular-activity in microcapsules. Biomaterials 11(9): 708-712.

Wang, H., Wang, X., Wang, P., Zhang, K., Yang, S. & Liu, Q. 2013. Ultrasound enhances the efficacy of chlorin E6- mediated photodynamic therapy in MDA-MB-231 cells. Ultrasound in Medicine & Biology 39(9): 1713-1724.

Watanabe, Akihiro, Takeshi Takatera, Toshio Sato, S Takeuchim, Hiroyuki Nishimura & Norimichi Kawashima. 2002. Study on suppression mechanism of cancer cells proliferation by ultrasound exposure for minimally invasive cancer treatment. Paper read at Ultrasonics Symposium, 2002. Proceedings. IEEE.

Wood, A.K.W. & Sehgal, C.M. 2015. A review of low-intensity ultrasound for cancer therapy. Ultrasound in Medicine & Biology 41(4): 905-928.

Wu, J. & Nyborg, W. 2006. Emerging Therapeutic Ultrasound. Singapore: World Scientific Publishing Co. Pte. Ltd.

 

 

*Corresponding author; email: pauliena@utm.my

 

 

 

 

 

previous