Sains Malaysiana 46(4)(2017): 589–595
http://dx.doi.org/10.17576/jsm-2017-4604-11
Effects of the Aqueous
Extracts of Rhodamnia cinerea on Metabolic Indices and Sorbitol-Related
Complications in Type 2 Diabetic Rats
(Kesan Ekstrak Akues
Rhodamnia cinerea terhadap Indeks Metabolik dan Komplikasi
Berkaitan Sorbitol dalam
Tikus Diabetik Jenis 2)
MUSTAPHA
UMAR
IMAM1,
MAZNAH
ISMAIL1,2*
& SASIKALA M CHINNAPPAN3
1Laboratory
of Molecular Biomedicine, Institute of Bioscience, Universiti Putra
Malaysia
43400
UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Nutrition and Dietetics,
Faculty of Medicine and Health Sciences
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Biotropics Malaysia Berhad, Jalan
Pantai Baharu, 50672 Kuala Lumpur, Federal Territory
Malaysia
Received:
26 November 2015/Accepted: 29 September 2016
ABSTRACT
There is growing interest
in the use of plant bioresources for managing type 2 diabetes. In
this study, Rhodamnia cinerea, which is used traditionally to manage diseases
in Malaysia, was explored for its antidiabetic effects. Type 2 diabetic
rats were managed for 4 weeks using aqueous extract of R. cinerea
or quercetin. Weights and fasting glucose were measured weekly,
while serum lipid profiles, insulin, antioxidant status, urea, creatinine
and liver enzymes were assayed at the end. Sorbitol contents, antioxidant
capacities and aldose reductase activities of the kidney, lens and
sciatic nerve were also assessed. The results showed that the aqueous
extract of R. Cinerea mainly contained Myricitrin and it
reduced glycemia (p>0.05), lipid profiles (p<0.05),
F2-isoprostanes (p<0.05) and overall metabolic condition
of type 2 diabetic rats. R. cinerea also attenuated sorbitol
contents of the nerve (p<0.05) and kidney (p<0.05),
partly through regulating the activity of aldose reductase (p<0.05
for nerve) and sorbitol dehydrogenase (p<0.05 for kidney)
in comparison with diabetic untreated group. Quercetin is a known
aldose reductase inhibitor and can improve several metabolic indices
related to Type 2 diabetes. In this study, the results of R.
cinerea were comparable to or better than those of quercetin,
suggesting that R. cinerea extract can be a good candidate
for managing Type 2 diabetes and its complications related to sorbitol
accumulation.
Keywords: Aldose reductase;
Rhodamnia cinerea; sorbitol; Type 2
diabetes
ABSTRAK
Terdapat minat yang
meningkat dalam penggunaan sumber biologi tumbuhan untuk menguruskan
Diabetes Jenis 2. Dalam kajian ini, Rhodamnia cinerea yang digunakan
secara tradisi untuk menguruskan penyakit di Malaysia, telah dikaji
untuk kesan antidiabetik. Tikus diabetik Jenis 2 dikendalikan selama
4 minggu menggunakan ekstrak akues R. cinerea atau quersetin.
Berat dan paras glukosa puasa diukur setiap minggu, manakala profil
serum lipid, insulin, status antioksidan, urea, kreatinin dan enzim
hati telah dicerakin pada peringkat akhir. Kandungan sorbitol, kapasiti
antioksidan dan aktiviti aldosa reduktase buah pinggang, kanta dan
saraf skiatik turut dinilai. Hasil kajian menunjukkan bahawa ekstrak
akues R. cinerea mengandungi Myricitrin dan memperbaiki glisemia
(p>0.05), profil lipid (p<0.05), F2-isoprostanes
(p<0.05) dan keadaan keseluruhan metabolik tikus Diabetes
Jenis 2 R. cinerea juga mengurangkan kandungan sorbitol pada
saraf (p<0.05) dan buah pinggang (p<0.05), sebahagiannya
melalui kawal selia aktiviti aldosa reduktase (p<0.05
untuk saraf) dan sorbitol dehydrogenase (p<0.05 untuk
buah pinggang) jika dibandingkan dengan kumpulan yang tidak dirawat.
Quersetin adalah perencat aldosa reduktase yang dikenal pasti dan
boleh meningkatkan beberapa indeks metabolik yang berkaitan Diabetes
Jenis 2. Dalam kajian ini, hasil kajian R. cinerea adalah
setanding dengan atau lebih baik daripada quersetin, justeru menunjukkan
bahawa ekstrak R. cinerea boleh menjadi calon yang berpotensi
untuk menguruskan Diabetes Jenis 2 dan komplikasi yang berkaitan
dengan pengumpulan sorbitol.
Kata kunci: Aldosa reduktase; Diabetes Jenis 2; Rhodamnia
cinerea; sorbitol
REFERENCES
Adam,
Z., Ismail, A., Khamis, S., Mokhtar, M.H.M. & Hamid, M. 2011.
Antihyperglycemic activity of F. deltoidea ethanolic extract
in normal rats. Sains Malaysiana 40(5): 489-495.
Dey,
A. & Lakshmanan, J. 2013. The role of antioxidants and other
agents in alleviating hyperglycemia mediated oxidative stress and
injury in liver. Food and Function 4(8): 1148-1184.
Elkeles,
R.S., Diamond, J.R., Poulter, C., Dhanjil, S., Nicolaides, A.N.,
Mahmood, S., Richmond, W., Mather, H., Sharp, P., Feher, M.D. &
SENDCAP Study Group. 1998. Cardiovascular outcomes in type 2 diabetes:
A double-blind placebo-controlled study of bezafibrate: The St.
Mary’s, Ealing, Northwick Park diabetes cardiovascular disease prevention
(SENDCAP) study. Diabetes Care 21(4): 641- 648.
Gabbay,
K.H. 1975. Hyperglycemia, polyol metabolism, and complications of
diabetes mellitus. Annual Review of Medicine 26(1): 521-536.
Gasparin,
F.R.S., Spitzner, F.L., Ishii-Iwamoto, E.L., Bracht, A. & Constantin,
J. 2003. Actions of quercetin on gluconeogenesis and glycolysis
in rat liver. Xenobiotica 33(9): 903-911.
Gehling,
M., Köpcke, B., Küper, T., Reinhardt, K., Reinemer, P., George,
A., Chinnappan, S. & Md. Akir, M.H. 2015. Extract Formulations
of Rhodamnia Cinerea And Uses Thereof. U.S. Washington, DC:
Patent and Trademark Office Patent No. 20,150,050,371.
Govaerts,
R., Sobral, N., Ashton, P., Barrie, F., Holst, B.K., Landrum, L.L.,
Matsumoto, K., Fernanda Mazine, F., Nic Lughadha, E., Proença, C.
& al. 2008. World Checklist of Myrtaceae. Royal Botanic Gardens,
Kew: Kew Publishing.
Gurib-Fakim,
A. 2006. Medicinal plants: Traditions of yesterday and drugs of
tomorrow. Molecular Aspects of Medicine 27: 1-93.
Imam,
M.U. & Maznah, I. 2013. Nutrigenomic effects of germinated brown
rice and its bioactives on hepatic gluconeogenic genes in Type 2
diabetic rats and HEPG2 cells. Molecular Nutrition and Food Research
57(3): 401-411.
Imam,
M.U., Maznah, I., Omar, A.R. & Ithnin, H. 2013. The hypocholesterolemic
effect of germinated brown rice involves the upregulation of the
apolipoprotein A1 and low-density lipoprotein receptor genes. Journal
of Diabetes Research 2013: Article ID. 134694.
Imam,
M.U., Musa, A.S.N., Azmi, N.H. & Maznah, I. 2012. Effects of
white rice, brown rice and germinated brown rice on antioxidant
status of Type 2 diabetic rats. International Journal of Molecular
Sciences 13: 12952-12969.
Ismail,
M. & Imam, M.U. 2014. Plant bioresources and their nutrigenomic
implications on health. In Novel Plant Bioresources: Applications
in Food, Medicine and Cosmetics, edited by Gurib-Fakim, A. New
Jersey: Wiley-Blackwell. pp 383-394.
Kador,
P.F., Kinoshita, J.H. & Sharpless, N.E. 1985. Aldose reductase
inhibitors: A potential new class of agents for the pharmacological
control of certain diabetic complications. Journal of Medicinal
Chemistry 28(7): 841-849.
Keng,
H. 1990. The Concise Flora of Singapore: Gymnosperms and Dicotyledons.
Singapore: Singapore University Press.
Li,
Y. & Ding, Y. 2012. Minireview: Therapeutic potential of myricetin
in diabetes mellitus. Food Science and Human Wellness 1(1):
19-25.
Magnusson,
I., Rothman, D.L., Katz, L.D., Shulman, R.G. & Shulman, G.I.
1992. Increased rate of gluconeogenesis in Type II diabetes mellitus.
A 13C nuclear magnetic resonance study. Journal of Clinical Investigation
90(4): 1323-1327.
Maronpot,
R.R., Koyanagi, M., Davis, J., Recio, L., Marbury, D., Boyle, M.
& Hayashi, S.M. 2015. Safety assessment and single-dose toxicokinetics
of the flavouring agent, myricitrin, in Sprague Dawley rats. Food
Additives & Contaminants: Part A 32(11): 1799-1809.
Matsukawa,
N., Matsumoto, M. & Hara, H. 2012. Nondigestible saccharide
enhances transcellular transport of myricetin glycosides in the
small intestine of rats: A newly defined mechanism of flavonoid
absorption. In Dietary Fiber and Health, edited by Cho, S.
& Almeida, N. New York: CRC Press. pp. 487-496.
Nasir,
N.N.N.M., Khandaker, M.M. & Mat, N. 2015. Bioactive compound
and therapeutic value of the some Malaysia medicinal plants: A review.
Journal of Agronomy 14(4): 319-330.
Ong,
K.C. & Khoo, H.E. 1997. Biological effects of myricetin. General
Pharmacology 29: 121-126.
Postal,
B.G., Guesser, S.M., Kappel, V.D., Ruani, A.P., Zamorano, N.S.,
de Campos, A.M., Reginatto, F.H., Pizzolatti, M.G., Hisayasu Suzuki,
D.O. & Barreto Silva, F.R.M. 2014. Mechanism of action of nutraceuticals
on intestine to ameliorate glucose homeostasis: Follow-up studies
by an in situ approach. Journal of Cell Science &
Therapy 5(3): 162. doi: 10.4172/2157-7013.1000162.
Rahim,
A.A., Mohamad, J. & Alias, Z. 2014. Antidiabetic activity of
aqueous extract of Leptospermum flavescens in alloxan induced
diabetic rats. Sains Malaysiana 43(9): 1295-1304.
Rahimi,
R., Nikfar, S., Larijani, B. & Abdollahi, M. 2005. A review
on the role of antioxidants in the management of diabetes and its
complications. Biomedicine & Pharmacotherapy 59(7): 365-373.
Roberts,
L.J. & Morrow, J.D. 2000. Measurement of F 2-isoprostanes as
an index of oxidative stress in vivo. Free Radical Biology &
Medicine 28(4): 505-513.
Scott,
A.J. 1979. A revision of Rhodamnia (Myrtaceae). Kew Bulletin
33(3): 429-459.
Stumvoll,
M., Goldstein, B.J. & van Haeften, T.W. 2005. Type 2 diabetes:
Principles of pathogenesis and therapy. The Lancet 365: 1333-1346.
Smith,
G.E. & Griffiths, L.A. 1970. Metabolism of myricitrin and 3,4,5-trihydroxyphenylacetic
acid. Biochemical Journal 118: 53P-54P.
World
Health Organisation. 2014. Diabetes Fact. http://www.who. int/mediacentre/factsheets/fs312/en/index.html.
Accessed on 6 October 2015.
Yabe-Nishimura,
C. 1998. Aldose reductase in glucose toxicity: A potential target
for the prevention of diabetic complications. Pharmacological
Reviews 50(1): 21-34.
*Corresponding author; email: maznahis@upm.edu.my
|