Sains Malaysiana 46(4)(2017): 589–595

http://dx.doi.org/10.17576/jsm-2017-4604-11

 

Effects of the Aqueous Extracts of Rhodamnia cinerea on Metabolic Indices and Sorbitol-Related Complications in Type 2 Diabetic Rats

(Kesan Ekstrak Akues Rhodamnia cinerea terhadap Indeks Metabolik dan Komplikasi

Berkaitan Sorbitol dalam Tikus Diabetik Jenis 2)

 

 

MUSTAPHA UMAR IMAM1, MAZNAH ISMAIL1,2* & SASIKALA M CHINNAPPAN3

 

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia

43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Biotropics Malaysia Berhad, Jalan Pantai Baharu, 50672 Kuala Lumpur, Federal Territory

Malaysia

 

Received: 26 November 2015/Accepted: 29 September 2016

 

 

ABSTRACT

There is growing interest in the use of plant bioresources for managing type 2 diabetes. In this study, Rhodamnia cinerea, which is used traditionally to manage diseases in Malaysia, was explored for its antidiabetic effects. Type 2 diabetic rats were managed for 4 weeks using aqueous extract of R. cinerea or quercetin. Weights and fasting glucose were measured weekly, while serum lipid profiles, insulin, antioxidant status, urea, creatinine and liver enzymes were assayed at the end. Sorbitol contents, antioxidant capacities and aldose reductase activities of the kidney, lens and sciatic nerve were also assessed. The results showed that the aqueous extract of R. Cinerea mainly contained Myricitrin and it reduced glycemia (p>0.05), lipid profiles (p<0.05), F2-isoprostanes (p<0.05) and overall metabolic condition of type 2 diabetic rats. R. cinerea also attenuated sorbitol contents of the nerve (p<0.05) and kidney (p<0.05), partly through regulating the activity of aldose reductase (p<0.05 for nerve) and sorbitol dehydrogenase (p<0.05 for kidney) in comparison with diabetic untreated group. Quercetin is a known aldose reductase inhibitor and can improve several metabolic indices related to Type 2 diabetes. In this study, the results of  R. cinerea were comparable to or better than those of quercetin, suggesting that R. cinerea extract can be a good candidate for managing Type 2 diabetes and its complications related to sorbitol accumulation.

 

Keywords: Aldose reductase; Rhodamnia cinerea; sorbitol; Type 2 diabetes

 

ABSTRAK

Terdapat minat yang meningkat dalam penggunaan sumber biologi tumbuhan untuk menguruskan Diabetes Jenis 2. Dalam kajian ini, Rhodamnia cinerea yang digunakan secara tradisi untuk menguruskan penyakit di Malaysia, telah dikaji untuk kesan antidiabetik. Tikus diabetik Jenis 2 dikendalikan selama 4 minggu menggunakan ekstrak akues R. cinerea atau quersetin. Berat dan paras glukosa puasa diukur setiap minggu, manakala profil serum lipid, insulin, status antioksidan, urea, kreatinin dan enzim hati telah dicerakin pada peringkat akhir. Kandungan sorbitol, kapasiti antioksidan dan aktiviti aldosa reduktase buah pinggang, kanta dan saraf skiatik turut dinilai. Hasil kajian menunjukkan bahawa ekstrak akues R. cinerea mengandungi Myricitrin dan memperbaiki glisemia (p>0.05), profil lipid (p<0.05), F2-isoprostanes (p<0.05) dan keadaan keseluruhan metabolik tikus Diabetes Jenis 2 R. cinerea juga mengurangkan kandungan sorbitol pada saraf (p<0.05) dan buah pinggang (p<0.05), sebahagiannya melalui kawal selia aktiviti aldosa reduktase (p<0.05 untuk saraf) dan sorbitol dehydrogenase (p<0.05 untuk buah pinggang) jika dibandingkan dengan kumpulan yang tidak dirawat. Quersetin adalah perencat aldosa reduktase yang dikenal pasti dan boleh meningkatkan beberapa indeks metabolik yang berkaitan Diabetes Jenis 2. Dalam kajian ini, hasil kajian R. cinerea adalah setanding dengan atau lebih baik daripada quersetin, justeru menunjukkan bahawa ekstrak R. cinerea boleh menjadi calon yang berpotensi untuk menguruskan Diabetes Jenis 2 dan komplikasi yang berkaitan dengan pengumpulan sorbitol.

 

Kata kunci: Aldosa reduktase; Diabetes Jenis 2; Rhodamnia cinerea; sorbitol

REFERENCES

Adam, Z., Ismail, A., Khamis, S., Mokhtar, M.H.M. & Hamid, M. 2011. Antihyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malaysiana 40(5): 489-495.

Dey, A. & Lakshmanan, J. 2013. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food and Function 4(8): 1148-1184.

Elkeles, R.S., Diamond, J.R., Poulter, C., Dhanjil, S., Nicolaides, A.N., Mahmood, S., Richmond, W., Mather, H., Sharp, P., Feher, M.D. & SENDCAP Study Group. 1998. Cardiovascular outcomes in type 2 diabetes: A double-blind placebo-controlled study of bezafibrate: The St. Mary’s, Ealing, Northwick Park diabetes cardiovascular disease prevention (SENDCAP) study. Diabetes Care 21(4): 641- 648.

Gabbay, K.H. 1975. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annual Review of Medicine 26(1): 521-536.

Gasparin, F.R.S., Spitzner, F.L., Ishii-Iwamoto, E.L., Bracht, A. & Constantin, J. 2003. Actions of quercetin on gluconeogenesis and glycolysis in rat liver. Xenobiotica 33(9): 903-911.

Gehling, M., Köpcke, B., Küper, T., Reinhardt, K., Reinemer, P., George, A., Chinnappan, S. & Md. Akir, M.H. 2015. Extract Formulations of Rhodamnia Cinerea And Uses Thereof. U.S. Washington, DC: Patent and Trademark Office Patent No. 20,150,050,371.

Govaerts, R., Sobral, N., Ashton, P., Barrie, F., Holst, B.K., Landrum, L.L., Matsumoto, K., Fernanda Mazine, F., Nic Lughadha, E., Proença, C. & al. 2008. World Checklist of Myrtaceae. Royal Botanic Gardens, Kew: Kew Publishing.

Gurib-Fakim, A. 2006. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27: 1-93.

Imam, M.U. & Maznah, I. 2013. Nutrigenomic effects of germinated brown rice and its bioactives on hepatic gluconeogenic genes in Type 2 diabetic rats and HEPG2 cells. Molecular Nutrition and Food Research 57(3): 401-411.

Imam, M.U., Maznah, I., Omar, A.R. & Ithnin, H. 2013. The hypocholesterolemic effect of germinated brown rice involves the upregulation of the apolipoprotein A1 and low-density lipoprotein receptor genes. Journal of Diabetes Research 2013: Article ID. 134694.

Imam, M.U., Musa, A.S.N., Azmi, N.H. & Maznah, I. 2012. Effects of white rice, brown rice and germinated brown rice on antioxidant status of Type 2 diabetic rats. International Journal of Molecular Sciences 13: 12952-12969.

Ismail, M. & Imam, M.U. 2014. Plant bioresources and their nutrigenomic implications on health. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics, edited by Gurib-Fakim, A. New Jersey: Wiley-Blackwell. pp 383-394.

Kador, P.F., Kinoshita, J.H. & Sharpless, N.E. 1985. Aldose reductase inhibitors: A potential new class of agents for the pharmacological control of certain diabetic complications. Journal of Medicinal Chemistry 28(7): 841-849.

Keng, H. 1990. The Concise Flora of Singapore: Gymnosperms and Dicotyledons. Singapore: Singapore University Press.

Li, Y. & Ding, Y. 2012. Minireview: Therapeutic potential of myricetin in diabetes mellitus. Food Science and Human Wellness 1(1): 19-25.

Magnusson, I., Rothman, D.L., Katz, L.D., Shulman, R.G. & Shulman, G.I. 1992. Increased rate of gluconeogenesis in Type II diabetes mellitus. A 13C nuclear magnetic resonance study. Journal of Clinical Investigation 90(4): 1323-1327.

Maronpot, R.R., Koyanagi, M., Davis, J., Recio, L., Marbury, D., Boyle, M. & Hayashi, S.M. 2015. Safety assessment and single-dose toxicokinetics of the flavouring agent, myricitrin, in Sprague Dawley rats. Food Additives & Contaminants: Part A 32(11): 1799-1809.

Matsukawa, N., Matsumoto, M. & Hara, H. 2012. Nondigestible saccharide enhances transcellular transport of myricetin glycosides in the small intestine of rats: A newly defined mechanism of flavonoid absorption. In Dietary Fiber and Health, edited by Cho, S. & Almeida, N. New York: CRC Press. pp. 487-496.

Nasir, N.N.N.M., Khandaker, M.M. & Mat, N. 2015. Bioactive compound and therapeutic value of the some Malaysia medicinal plants: A review. Journal of Agronomy 14(4): 319-330.

Ong, K.C. & Khoo, H.E. 1997. Biological effects of myricetin. General Pharmacology 29: 121-126.

Postal, B.G., Guesser, S.M., Kappel, V.D., Ruani, A.P., Zamorano, N.S., de Campos, A.M., Reginatto, F.H., Pizzolatti, M.G., Hisayasu Suzuki, D.O. & Barreto Silva, F.R.M. 2014. Mechanism of action of nutraceuticals on intestine to ameliorate glucose homeostasis: Follow-up studies by an in situ approach. Journal of Cell Science & Therapy 5(3): 162. doi: 10.4172/2157-7013.1000162.

Rahim, A.A., Mohamad, J. & Alias, Z. 2014. Antidiabetic activity of aqueous extract of Leptospermum flavescens in alloxan induced diabetic rats. Sains Malaysiana 43(9): 1295-1304.

Rahimi, R., Nikfar, S., Larijani, B. & Abdollahi, M. 2005. A review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy 59(7): 365-373.

Roberts, L.J. & Morrow, J.D. 2000. Measurement of F 2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biology & Medicine 28(4): 505-513.

Scott, A.J. 1979. A revision of Rhodamnia (Myrtaceae). Kew Bulletin 33(3): 429-459.

Stumvoll, M., Goldstein, B.J. & van Haeften, T.W. 2005. Type 2 diabetes: Principles of pathogenesis and therapy. The Lancet 365: 1333-1346.

Smith, G.E. & Griffiths, L.A. 1970. Metabolism of myricitrin and 3,4,5-trihydroxyphenylacetic acid. Biochemical Journal 118: 53P-54P.

World Health Organisation. 2014. Diabetes Fact. http://www.who. int/mediacentre/factsheets/fs312/en/index.html. Accessed on 6 October 2015.

Yabe-Nishimura, C. 1998. Aldose reductase in glucose toxicity: A potential target for the prevention of diabetic complications. Pharmacological Reviews 50(1): 21-34.

 

 

*Corresponding author; email: maznahis@upm.edu.my

 

 

 

 

previous