Sains Malaysiana 46(4)(2017): 629–635

http://dx.doi.org/10.17576/jsm-2017-4604-16

 

Morphological Study of Synthesized RGO/ Pt Nanocomposites via Facile Chemical Reduction Method

(Kajian Morfologi Komposit Nano RGO/ Pt yang Disintesis melalui Kaedah Penurunan Kimia secara Mudah)

 

 

MOHAMAD FAHRUL RADZI HANIFAH1, JUHANA JAAFAR1*, MADZLAN AZIZ2, MOHD HAFIZ DZARFAN OTHMAN2, MUKHLIS A. RAHMAN1, AHMAD FAUZI ISMAIL1, CHIONG SIE JING1, FARHANA AZIZ1, W.N.W. SALLEH1, N. YUSOF1 & M.Z.A. THIRMIZIR3

 

1Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim

Malaysia

 

2Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia

81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

3Science and Engineering Research Centre, Universiti Sains Malaysia, Engineering Campus

14300 Nibong Tebal, Pulau Pinang, Malaysia

 

Received: 12 December 2015/Accepted: 15 September 2016

 

ABSTRACT

Reduced graphene oxide nanosheet (RGO)/Pt nanocomposite have been successfully prepared through a facile chemical reduction method. The reduction of Pt precursor was carried out using sodium borohydride as the efficient chemical reductant. The morphology of RGO/Pt nanocomposite was investigated using high resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). HRTEM analysis showed that platinum nanoparticles were homogenously distributed onto the surface of RGO. The electrochemical study proved that Pt nanoparticles were successfully incorporated onto RGO. Therefore, it can be concluded that the proposed method could provide well-dispersed of Pt nanoparticles onto RGO to form RGO/ Pt nanocomposite.

 

Keywords: Chemical reduction; electrochemical; morphology; reduced graphene oxide nanosheet; RGO/ Pt nanocomposite

 

ABSTRAK

Komposit nano RGO/Pt telah berjaya disediakan melalui kaedah penurunan kimia secara mudah. Penurunan bahan pemula Pt telah dijalankan dengan menggunakan natrium borohidrida sebagai bahan penurun kimia yang efisyen. Morfologi komposit nano RGO/Pt telah dikaji menggunakan HRTEM dan FESEM. Analisis HRTEM menunjukkan bahawa zarah nano platinum telah diagihkan secara sekata ke atas permukaan RGO. Kajian secara elektrokimia membuktikan bahawa zarah nano Pt telah berjaya diperbadankan ke atas RGO. Oleh itu, dapat disimpulkan bahawa kaedah yang dicadangkan ini boleh menyediakan penyebaran zarah nano Pt yang baik ke atas RGO untuk membentuk komposit nano RGO/Pt.

 

Kata kunci: Elektrokimia; kepingan grafena oksida yang diturunkan; komposit nano RGO/Pt; morfologi; penurunan kimia

 

REFERENCES

 

Amamath, C.A., Hong, C.E., Kim, N.H., Ku, B.C., Kuila, T. & Lee, J.H. 2011. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 49: 3497-3502.

Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. 2008. Superior thermal conductivity of single-layer graphene. Nano Letter. 8(3): 902-907.

Choi, H.J., Jung, S.M., Seo, J.M., Chang, D.W., Dai, L.M. & Baek, J.B. 2012. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4): 534-551.

Gao, L., Ding, L. & Fan, L. 2013. Pt nanoflower/graphene-layered composites by ZnO nanoparticle expansion of graphite and their enhanced electrocatalytic activity for methanol oxidation. Electrochimica Acta 106: 159-164.

Guo, S.J., Wen, D., Zhai, Y.M., Dong, S.J. & Wang, E.K. 2010. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 4(7): 3959-3968.

Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Othman, M.H.D., Rahman, M.A., Norddin, M.N.A.M., Yusof, N. & Salleh, W.N.W. 2015a. Efficient reduction of graphene oxide nanosheets using Na2C2O4 as a reducing agent. Functional Materials Letters 8(2): 15500261-15500265.

Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Rahman, M.A. & Othman, M.H.D. 2015b. Synthesis of graphene oxide nanosheets via modified hummers’ method and its physicochemical properties. Jurnal Teknologi (Science and Engineering) 74(1): 195-198.

Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Thirmizir, M.Z.A., Othman, M.H.D., Rahman, M.A. & Yusof, N. 2016. Electrocatalytic study of efficient synthesized graphene nanosheets incorporated with Pt nanoparticles for methanol oxidation reaction. Electroanalysis 28: 222-226.

Hull, R.V., Li, L., Xing, Y. & Chusuei, C.C. 2006. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chem. Mater. 18: 1780-1788.

Ji, K., Chang, G., Oyama, M., Shang, X., Liu, X. & He, Y. 2012. Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell. Electrochimica Acta 85: 84-89.

Kongkanand, A., Vinodgopal, K., Kuwabata, S. & Kamat, P.V. 2006. Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation. J. Phys. Chem. B 110(33): 16185-16188.

Kou, R., Shao, Y.Y., Wang, D.H., Engelhard, M.H., Kwak, J.H., Wang, J., Viswanathan, V.V., Wang, C.M., Lin, Y.H., Wang, Y., Aksay, I.A. & Liu, J. 2009. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications 11(5): 954-957.

Lee, C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385-388.

Liang, Q., Zhang, L., Cai, M., Li, Y., Jiang, K., Zhang, X. & Shen, P.K. 2013. Preparation and charaterization of Pt/ functionalized graphene and itselectrocatalysis for methanol oxidation. Electrochimica Acta 111: 275-283.

Lin, Y.H., Cui, X.L., Yen, C. & Wai, C.M. 2005. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal of Physical Chemistry B 109(30): 14410-14415.

Liu, P., Huang, Y. & Wang, L. 2013. Synthesis of reduced graphene oxide using indole as a reducing agent and preparation of reduced graphene oxide-Ag nanocomposites. Synthetic Metals. 167: 25-30.

Luo, B.M., Yan, X.B., Xu, S. & Xue, Q.J. 2012. Polyelectrolyte functionalization of graphenenanosheets as support for platinum nanoparticles and their applications tomethanol oxidation. Electrochimica Acta 59: 429-434.

Ma, C., Liu, W., Shia, M., Lang, X., Chu, Y., Chen, Z., Zhao, D., Lin, W. & Hardacre, C. 2013. Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation. Electrochimica Acta 114: 133-141.

McAllister, M.J., Li, J.L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K. & Aksay, I.A. 2007. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19: 4396-4404.

Service, R.F. 2009. Carbon sheets an atom thick give rise to graphene dreams. Science 324(5929): 875-877.

Steigerwalt, E.S., Deluga, G.A., Cliffel, D.E. & Lukehart, C.M. 2001. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst. J. Phys. Chem. B. 105: 8097-8101.

van Rheenen, P.R., Mckelvy, M.J. & Glaunsingers, W.S. 1987. Synthesis and characterization of small platinum particles formed by the chemical reduction of chloroplatinic acid. Journal of Solid State Chemistry 67: 151-169.

Wen, Z., Liu, J. & Li, J. 2008. Core/shell Pt/C nanoparticles embedded in mesoporous car-bon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 20(4): 743-747.

Xu, X., Zhou, Y., Lu, J., Tian, X., Zhu, H. & Liu, J. 2014. Single-step synthesis of PtRu/N-doped graphene for methanol electrocatalytic oxidation. Electrochimica Acta 120: 439-451.

Zhang, X., Kumar, P.S., Aravindan, V., Liu, H.H., Sundaramurth, J., Mhaisalkar, S.G., Duong, H.M., Ramakrishna, S. & Madhavi, S. 2012. Electrospun TiO2-graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J. Phys. Chem. C. 116: 14780-14788.

 

 

*Corresponding author; email: juhana@petroleum.utm.my

 

 

 

 

previous