Sains Malaysiana 46(4)(2017): 629–635
http://dx.doi.org/10.17576/jsm-2017-4604-16
Morphological Study of Synthesized RGO/
Pt Nanocomposites via Facile Chemical Reduction Method
(Kajian Morfologi Komposit Nano RGO/ Pt yang Disintesis
melalui Kaedah
Penurunan Kimia secara Mudah)
MOHAMAD
FAHRUL
RADZI
HANIFAH1,
JUHANA
JAAFAR1*,
MADZLAN
AZIZ2,
MOHD
HAFIZ
DZARFAN
OTHMAN2,
MUKHLIS A.
RAHMAN1,
AHMAD
FAUZI ISMAIL1, CHIONG
SIE
JING1,
FARHANA
AZIZ1,
W.N.W.
SALLEH1,
N.
YUSOF1
& M.Z.A. THIRMIZIR3
1Advanced Membrane Technology
Research Centre (AMTEC), Faculty of Chemical and Energy Engineering
(FCEE), Universiti Teknologi
Malaysia, 81310 UTM Skudai, Johor Darul
Takzim
Malaysia
2Department of Chemistry,
Faculty of Science, Universiti Teknologi Malaysia
81310 UTM Skudai, Johor Darul Takzim, Malaysia
3Science and Engineering
Research Centre, Universiti Sains Malaysia, Engineering Campus
14300 Nibong Tebal, Pulau
Pinang, Malaysia
Received: 12 December
2015/Accepted: 15 September 2016
ABSTRACT
Reduced graphene oxide nanosheet (RGO)/Pt nanocomposite have been
successfully prepared through a facile chemical reduction method.
The reduction of Pt precursor was carried out using sodium borohydride
as the efficient chemical reductant. The morphology of RGO/Pt nanocomposite was investigated
using high resolution transmission electron microscopy (HRTEM)
and field emission scanning electron microscopy (FESEM).
HRTEM
analysis showed that platinum nanoparticles were homogenously
distributed onto the surface of RGO. The electrochemical study
proved that Pt nanoparticles were successfully incorporated onto
RGO.
Therefore, it can be concluded that the proposed method could provide
well-dispersed of Pt nanoparticles onto RGO to form RGO/
Pt nanocomposite.
Keywords: Chemical reduction;
electrochemical; morphology; reduced graphene oxide nanosheet; RGO/ Pt nanocomposite
ABSTRAK
Komposit nano RGO/Pt
telah berjaya
disediakan melalui kaedah penurunan kimia secara mudah. Penurunan bahan pemula Pt telah dijalankan dengan menggunakan natrium borohidrida sebagai bahan penurun
kimia yang efisyen.
Morfologi komposit nano RGO/Pt
telah dikaji
menggunakan HRTEM dan
FESEM.
Analisis
HRTEM
menunjukkan bahawa
zarah nano platinum
telah diagihkan secara sekata ke
atas permukaan
RGO.
Kajian
secara elektrokimia membuktikan bahawa zarah nano Pt telah
berjaya diperbadankan
ke atas RGO.
Oleh
itu, dapat disimpulkan
bahawa kaedah
yang dicadangkan ini boleh menyediakan penyebaran zarah nano Pt yang baik ke atas RGO untuk membentuk komposit nano RGO/Pt.
Kata kunci: Elektrokimia;
kepingan grafena
oksida yang diturunkan; komposit nano RGO/Pt;
morfologi; penurunan
kimia
REFERENCES
Amamath,
C.A., Hong, C.E., Kim, N.H., Ku, B.C., Kuila,
T. & Lee, J.H. 2011. Efficient synthesis of graphene sheets using pyrrole as a reducing
agent. Carbon 49: 3497-3502.
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. 2008. Superior thermal conductivity of single-layer graphene. Nano
Letter. 8(3): 902-907.
Choi,
H.J., Jung, S.M., Seo, J.M., Chang, D.W.,
Dai, L.M. & Baek, J.B. 2012. Graphene
for energy conversion and storage in fuel cells and supercapacitors.
Nano Energy 1(4): 534-551.
Gao, L., Ding, L. &
Fan, L. 2013. Pt nanoflower/graphene-layered
composites by ZnO nanoparticle expansion
of graphite and their enhanced electrocatalytic
activity for methanol oxidation. Electrochimica
Acta 106: 159-164.
Guo, S.J., Wen, D., Zhai,
Y.M., Dong, S.J. & Wang, E.K. 2010. Platinum nanoparticle ensemble-on-graphene
hybrid nanosheet: One-pot, rapid synthesis,
and used as new electrode material for electrochemical sensing.
ACS Nano 4(7): 3959-3968.
Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Othman, M.H.D., Rahman,
M.A., Norddin, M.N.A.M., Yusof,
N. & Salleh, W.N.W. 2015a. Efficient
reduction of graphene oxide nanosheets
using Na2C2O4 as a reducing agent. Functional Materials
Letters 8(2): 15500261-15500265.
Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Rahman, M.A. & Othman,
M.H.D. 2015b. Synthesis of graphene oxide nanosheets
via modified hummers’ method and its physicochemical properties.
Jurnal Teknologi (Science
and Engineering) 74(1): 195-198.
Hanifah, M.F.R., Jaafar, J., Aziz, M., Ismail, A.F., Thirmizir,
M.Z.A., Othman, M.H.D., Rahman, M.A. & Yusof,
N. 2016. Electrocatalytic study of efficient synthesized
graphene nanosheets incorporated with
Pt nanoparticles for methanol oxidation reaction. Electroanalysis
28: 222-226.
Hull,
R.V., Li, L., Xing, Y. & Chusuei,
C.C. 2006. Pt nanoparticle binding
on functionalized multiwalled carbon nanotubes.
Chem. Mater. 18: 1780-1788.
Ji,
K., Chang, G., Oyama, M., Shang, X., Liu,
X. & He, Y. 2012. Efficient and clean synthesis of graphene supported platinum nanoclusters
and its application in direct methanol fuel cell. Electrochimica Acta 85:
84-89.
Kongkanand, A., Vinodgopal, K., Kuwabata, S. &
Kamat, P.V. 2006. Highly
dispersed Pt catalysts on single-walled carbon nanotubes and their
role in methanol oxidation. J. Phys. Chem. B 110(33):
16185-16188.
Kou, R., Shao, Y.Y.,
Wang, D.H., Engelhard, M.H., Kwak, J.H.,
Wang, J., Viswanathan, V.V., Wang, C.M., Lin, Y.H., Wang, Y., Aksay,
I.A. & Liu, J. 2009. Enhanced activity and
stability of Pt catalysts on functionalized graphene sheets for
electrocatalytic oxygen reduction.
Electrochemistry Communications 11(5): 954-957.
Lee, C., Wei, X., Kysar, J.W. & Hone, J. 2008. Measurement
of the elastic properties and intrinsic strength of monolayer graphene.
Science 321(5887): 385-388.
Liang, Q., Zhang, L.,
Cai, M., Li,
Y., Jiang, K., Zhang, X. & Shen, P.K. 2013. Preparation
and charaterization of Pt/ functionalized graphene and itselectrocatalysis for methanol oxidation. Electrochimica Acta 111:
275-283.
Lin,
Y.H., Cui, X.L., Yen, C. & Wai, C.M. 2005. Platinum/carbon nanotube
nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. Journal
of Physical Chemistry B 109(30): 14410-14415.
Liu,
P., Huang, Y. & Wang, L. 2013. Synthesis of reduced graphene oxide using indole as a reducing agent
and preparation of reduced graphene oxide-Ag nanocomposites. Synthetic Metals. 167: 25-30.
Luo,
B.M., Yan, X.B., Xu, S. & Xue, Q.J.
2012. Polyelectrolyte
functionalization of graphenenanosheets
as support for platinum nanoparticles and their applications tomethanol
oxidation. Electrochimica
Acta 59: 429-434.
Ma,
C., Liu, W., Shia, M., Lang, X., Chu, Y., Chen, Z., Zhao, D., Lin,
W. & Hardacre, C. 2013. Low loading platinum nanoparticles on
reduced graphene oxide-supported tungsten carbide crystallites as
a highly active electrocatalyst for methanol
oxidation. Electrochimica Acta 114:
133-141.
McAllister,
M.J., Li, J.L., Adamson, D.H., Schniepp,
H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius,
D.L., Car, R., Prud’homme, R.K. &
Aksay, I.A. 2007. Single sheet functionalized graphene by
oxidation and thermal expansion of graphite. Chem. Mater. 19:
4396-4404.
Service,
R.F. 2009. Carbon sheets an atom thick give rise to graphene dreams. Science
324(5929): 875-877.
Steigerwalt, E.S., Deluga, G.A., Cliffel, D.E. &
Lukehart, C.M. 2001. A
Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative
performance as a direct-methanol fuel cell anode catalyst.
J. Phys. Chem. B. 105: 8097-8101.
van Rheenen,
P.R., Mckelvy, M.J. & Glaunsingers,
W.S. 1987. Synthesis and characterization of small
platinum particles formed by the chemical reduction of chloroplatinic
acid. Journal of Solid State Chemistry 67: 151-169.
Wen,
Z., Liu, J. & Li, J. 2008. Core/shell Pt/C nanoparticles embedded in mesoporous car-bon as
a methanol-tolerant cathode catalyst in direct methanol fuel cells.
Adv. Mater. 20(4): 743-747.
Xu,
X., Zhou, Y., Lu, J., Tian, X., Zhu, H. & Liu, J. 2014. Single-step
synthesis of PtRu/N-doped graphene for
methanol electrocatalytic oxidation. Electrochimica
Acta 120: 439-451.
Zhang, X., Kumar, P.S.,
Aravindan, V., Liu, H.H., Sundaramurth,
J., Mhaisalkar, S.G., Duong, H.M., Ramakrishna, S. & Madhavi, S. 2012. Electrospun TiO2-graphene composite nanofibers as a highly durable insertion
anode for lithium ion batteries. J. Phys. Chem. C. 116:
14780-14788.
*Corresponding
author; email: juhana@petroleum.utm.my
|