Sains Malaysiana 46(4)(2017): 655–665

http://dx.doi.org/10.17576/jsm-2017-4604-19

 

Synthesis of Silica-supported Nanoiron for Cr(VI) Removal: Application of Box-Behnken Statistical Design (BBD)

(Sintesis Besi Nano Disokong Silika untuk Penyingkiran Cr(VI): Aplikasi Reka Bentuk Statistik Box-Behnken (BBD))

 

 

PRAEWPATRA ARCHARIYAPANYAKUL1, BHUCKCHANYA PANGKUMHANG2,

PUMMARIN KHAMDAHSAG3,4,5 & VISANU TANBOONCHUY2,5,6*

 

1Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathumthani 12120, Thailand

 

2Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 Thailand

 

3Environmental Research Institute, Center of Excellence on Hazardous Substance Management

Chulalongkorn University, Bangkok 10330, Thailand

 

4Research Unit of Site Remediation on Metals Management from Industry and Mining, Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330

Thailand

 

5Research Program of Toxic Substance Management in Mining Industry, Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok 10330, Thailand

 

6Research Center for Environmental and Hazardous Substance Management (EHSM)

Khon Kaen University, Khon Kaen 40002, Thailand

 

Received: 25 April 2016/Accepted: 7 September 2016

 

 

ABSTRACT

This study aimed to optimize the condition of silica-supported nanoscale zero valent iron (NZVI/SiO2) synthesis by colloidal impregnation method. Box-Behnken design (BBD) was used as a tool to create and analyze the 17 synthesized conditions of NZVI/SiO2 samples. The independent variables included ethanol concentration (0-100 vol%), amount of silica (0.025-0.125 g) and agitation speed (100-400 rpm). In addition, analysis of variance (ANOVA) for a response surface quadratic model was used to approximate statistical relationship of independent variables. The reducing performance of the synthesized NZVI/SiO2 was examined through removal of Cr(VI) contaminated in water. The optimum of NZVI/SiO2 synthesis was validated with 100 vol% of ethanol concentration, 0.075 g of silica amount, and 100 rpm of agitation speed. The materials were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and nitrogen adsorption/desorption which showed the existence of NZVI phase, composition, and morphology. The Cr(VI) removal efficiency of the NZVI/SiO2 was tested further at the solution pH 4, 7 and 10 in comparison with that by pristine NZVI and silica-unsupported NZVI (NZVI + SiO2). Among the three materials, NZVI/SiO2 presented the highest Cr(VI) removal, especially at pH 7 and 10 with 98 and 94.41%, within 60 min. This was due to the adsorption of Cr(OH)3 and Fe(OH)3 precipitates over SiO2 resulting in availibilty of NZVI/SiO2’s active sites. The proposed mechanism of Cr(VI) removal by NZVI/SiO2 was also described.

 

Keywords: Box-Behnken design; chromium; NZVI; silica-supported nanoiron

 

ABSTRAK

Kajian ini bertujuan untuk mengoptimumkan keadaan sintesis besi skala nano disokong silika bervalensi sifar (NZVI/SiO2) melalui kaedah pemadatan koloid. Reka bentuk Box-Behnken (BBD) telah digunakan sebagai alat untuk mencipta dan menganalisis sampel 17 keadaan sintesis NZVI/SiO2. Pemboleh ubah bebas termasuk kepekatan etanol (0-100 vol%), silika (0.025-0.125 g) dan kelajuan goncangan (100-400 rpm). Selain itu, analisis varians (ANOVA) untuk model quadratik tindak balas permukaan telah digunakan untuk menganggar hubungan statistik pemboleh ubah bebas. Pengurangan prestasi sintesis NZVI/SiO2 telah disemak melalui penyingkiran Cr(VI) tercemar dalam air. Sintesis NZVI/SiO2 optimum telah disahkan dengan 100 vol% kepekatan etanol, 0.075 g silika dan 100 rpm kelajuan goncangan. Bahan ini telah dicirikan menggunakan pembelauan sinar-x (XRD), mikroskop elektron imbasan dengan spektroskopi tenaga serakan sinar-x (SEM-EDX) dan nitrogen penjerapan/penyahjerapan yang menunjukkan kewujudan fasa NZVI, komposisi dan morfologi. Kecekapan penyingkiran Cr(VI) NZVI/SiO2 telah diuji selanjutnya pada larutan pH 4, 7 dan 10 berbanding dengan NZVI asli dan NZVI tidak disokong silika (NZVI/SiO2). Antara ketiga-tiga bahan, NZVI/SiO2 menunjukkan penyingkiran Cr(VI) tertinggi, terutamanya pada pH 7 dan 10 dengan 98 dan 94.41% dalam masa 60 minit. Ini disebabkan penjerapan Cr(OH)3 dan mendakan Fe(OH)3 ke atas SiO2 yang mengakibatkan ketersediaan tapak aktif NZVI/SiO2. Mekanisme cadangan penyingkiran Cr(VI) oleh NZVI/SiO2 turut dibincangkan.

 

Kata kunci: Besi nano disokong silika; kromium; NZVI; reka bentuk Box-Behnken

REFERENCES

Anderson, R.A. 1997. Chromium as an essential nutrient for humans. Regulatory Toxicology Pharmacology 26: 35-41.

Astrup, T., Stipp, S.L.S. & Christensen, T.H. 2000. Immobilization of chromate from coal fly ash leachate using an attenuating barrier containing zero-valent iron. Environmental Science & Technology 34: 4163-4168.

Blowes, D.W., Ptacek, C.J. & Jambor, J.L. 1997. In situ remediation of Cr(VI) contaminated ground water using permeable reactive walls: Laboratory studies. Environmental Science & Technology 31: 3348-3357.

Chang, L.Y. 2005. Chromate reduction in wastewater at different pH levels using thin iron wires-a laboratory study. Environmental Progress 24: 305-316.

Chang, L.Y. 2003. Alternative chromium reduction and heavymetal precipitation methods for industrial wastewater. Environmental Progress 22: 174-182.

Chen, S.S., Cheng, C.Y., Li, C.W., Chai, P.H. & Chang, Y.M. 2006. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process. Journal of Hazardous Materials 142: 362-367.

Coller-Myburgh, C.V., Rensburg, L.V. & Maboeta, M. 2014. Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes. Applied Soil Ecology 83: 258-265.

Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking water. Toxicology and Applied Pharmacology 188: 1-5.

Dassi, D., Frikha, F., Zouari, M.H., Belbahri, L., Woodward, S. & Mechichi, T. 2012. Application of response surface methodology to optimize decolourization of dyes by the laccase-mediator system. Journal of Environmental Management 108: 84-91.

Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo, X. & Bi, D. 2015. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138: 726-734.

Guha, S. & Bhargava, P. 2005. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria. Water Environment Research 77: 411-416.

Katz, S.A. & Salem, H. 1993. The toxicology of chromium with respect to its chemical speciation: A review. Journal of Applied Toxicology 13: 217-224.

Kiattisaksiri, P., Khamdahsag, P., Khemthong, P., Pimpha, N. & Grisdanurak, N. 2014. Photocatalytic degradation of 2,4-dichlorophenol over Fe-ZnO catalyst under visible light. Korean Journal of Chemical Engineering. DOI: 10.1007/ s11814-014-0379-6.

Kohn, T., Livi, K.J.T., Roberts, A.L. & Vikesland, P.J. 2005. Longevity of granular iron in groundwater treatment processes: Corrosion product development. Environmental Science & Technology 39: 2867-2879.

Li, X., Ai, L. & Jiang, J. 2016. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance. Chemical Engineering Journal 288: 789-797.

Li, X.Q., Cao, J. & Zhang, W.X. 2008. Immobilization of hexavalent chromium with Iron nanoparticles: Characterizations with high resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research 47: 2131-2139.

Liu, C., Fiol, N., Poch, J. & Villaescusa, L. 2016. A new technology for the treatment of chromium electroplating wastewater based on biosorption. Journal of Water Process Engineering 11: 143-151.

Mocellin, J., Mercier, G., Morel, J.L., Blais, J.F. & Simonnot, M.O. 2015. Factors influencing the Zn and Mn extraction from pyrometallurgical sludge in the steel manufacturing industry. Journal of Environmental Management 158: 48-54.

Oh, Y.J., Song, H., Shin, W.S., Choi, S.J. & Kim, Y.H. 2007. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron. Chemosphere 66: 858- 865.

Padmavathy, K.S., Madhu, G. & Haseena, P.V. 2016. A study on effects of pH, adsorption dosage, time, initial concentration and adsorption isotherm study for removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Procedia Technology 24: 585-594.

Powell, R.M. & Puls, R.W. 1997. Proton generation by dissolution of intrinsic or augmented aluminosilicate minerals for in situ contaminant remediation by zero-valence-state iron. Environmental Science & Technology 31: 2244-2251.

Powell, R.M., Puls, R.W., Hightower, S.K. & Sabatini, D.A. 1995. Coupled iron corrosion and chromate reduction: Mechanisms for subsurface remediation. Environmental Science & Technology 29: 1913-1922.

Sass, B.M. & Rai, D. 1987. Solubility of amorphous chromium(III)-iron(III) hydroxide solid-solution. Inorganic Chemistry 26: 2228-2232.

Shih, Y.J., Chen, C.W., Hsia, K.F. & Dong, C.D. 2015. Granulation for extended-release of nanoscale zero-valent iron exemplified by hexavalent chromium reduction in aqueous solution. Separation and Purification Technology 156: 1073-1081.

Tanboonchuy, V., Grisdanurak, N. & Liao, C.H. 2012. Nitrate probe for quantifying reducing power of nanoscale zero-valent iron. Sustainable Environment Research 22: 185-191.

Tanboonchuy, V., Hsu, J.C., Grisdanurak, N. & Liao, C.H. 2011. Gas-bubbled nano zero-valent iron process for high concentration arsenate removal. Journal of Hazardous Materials 186: 2123-2128.

Tantriratan, P., Wirojanagud, W., Neramittagapong, S., Wantala, K. & Grisdanurak, N. 2011. Optimization for UV-photocatalytic degradation of paraquat over titanium dioxide supported on rice husk silica using Box-Behnken design. Indian Journal of Chemical Technology 18: 363-371.

Toli, A., Chalastara, K., Mystrioti, C., Xenidis, A. & Papassiopi, N. 2016. Incorporation of zero valent iron nanoparticles in the matrix of cationic resin beads for the remediation of Cr(VI) contaminated waters. Environmental Pollution 214: 419-429.

Tripathi, P., Srivastava, V.C. & Kumar, A. 2009. Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249: 1273-1279.

Vikesland, P.J., Klausen, J., Zimmermann, H., Roberts, A.L. & Ball, W.P. 2003. Longevity of granular iron in groundwater treatment processes: Changes in solute transport properties over time. Journal of Contaminant Hydrology 64: 3-33.

Wang, Q., Snyder, S., Kim, J. & Choi, H. 2009. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization and reactivity. Environmental Science & Technology 43: 3292-3299.

World Health Organization (WHO). 2004. Guidelines for Drinking-water Quality. 3rd ed. Recommendations. WHO, Geneva. 1: 334-335.

Wu, C., Li, C., Leng, D. & Cui, D. 2016. Factors affecting the reductive properties of the core-shell Sio2-coated iron nanoparticles. Advances in Chemical Engineering and Science 6: 316-323.

Wu, L., Liao, L., Lv, G. & Qin, F. 2015. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its application on Ce(VI) removal. Journal of Contaminant Hydrology 179: 1-9.

Yirsaw, B.D., Megharaj, M., Chen, Z. & Naidu, R. 2016. Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response surface methodology. Environmental Technology & Innovation 5: 136-147.

Zhang, Y., Li, Y., Li, J., Hu, L. & Zheng, X. 2011. Enhanced removal of nitrate by a novel composite: Nanoscale zero valent iron supported on pillared clay. Chemical Engineering Journal 171: 526-531.

Zhou, X., Lv, B., Zhou, Z., Li, W. & Jing, G. 2015. Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(Vi) removal. Chemical Engineering Journal 281: 155-163.

 

*Corresponding author; email: visanu@kku.ac.th

 

 

 

 

previous