Sains Malaysiana 46(4)(2017): 655–665
http://dx.doi.org/10.17576/jsm-2017-4604-19
Synthesis of Silica-supported Nanoiron for Cr(VI) Removal: Application
of Box-Behnken Statistical Design (BBD)
(Sintesis Besi Nano Disokong Silika untuk Penyingkiran
Cr(VI): Aplikasi
Reka Bentuk Statistik
Box-Behnken (BBD))
PRAEWPATRA ARCHARIYAPANYAKUL1,
BHUCKCHANYA
PANGKUMHANG2,
PUMMARIN KHAMDAHSAG3,4,5 & VISANU TANBOONCHUY2,5,6*
1Department of Chemical Engineering,
Faculty of Engineering, Thammasat University,
Pathumthani 12120, Thailand
2Department of Environmental Engineering,
Faculty of Engineering, Khon Kaen University, Khon Kaen 40002 Thailand
3Environmental Research Institute,
Center of Excellence on Hazardous Substance Management
Chulalongkorn University, Bangkok 10330, Thailand
4Research Unit of Site Remediation
on Metals Management from Industry and Mining, Center of Excellence
on Hazardous Substance Management, Chulalongkorn
University, Bangkok 10330
Thailand
5Research Program of Toxic Substance
Management in Mining Industry, Center of Excellence on Hazardous
Substance Management, Chulalongkorn University,
Bangkok 10330, Thailand
6Research Center for Environmental
and Hazardous Substance Management (EHSM)
Khon Kaen
University, Khon Kaen
40002, Thailand
Received:
25 April 2016/Accepted: 7 September 2016
ABSTRACT
This study aimed to optimize
the condition of silica-supported nanoscale zero valent iron (NZVI/SiO2)
synthesis by colloidal impregnation method. Box-Behnken
design (BBD) was used as a tool to create and analyze the 17 synthesized
conditions of NZVI/SiO2 samples.
The independent variables included ethanol concentration (0-100
vol%), amount
of silica (0.025-0.125 g) and agitation speed (100-400 rpm). In
addition, analysis of variance (ANOVA) for a response surface
quadratic model was used to approximate statistical relationship
of independent variables. The reducing performance of the synthesized
NZVI/SiO2 was
examined through removal of Cr(VI) contaminated
in water. The optimum of NZVI/SiO2 synthesis
was validated with 100 vol% of ethanol
concentration, 0.075 g of silica amount, and 100 rpm of agitation
speed. The materials were characterized using X-ray diffraction
(XRD), scanning electron microscopy
with energy dispersive X-ray spectroscopy (SEM-EDX),
and nitrogen adsorption/desorption which showed the existence of
NZVI
phase, composition, and morphology. The Cr(VI)
removal efficiency of the NZVI/SiO2 was
tested further at the solution pH 4, 7 and 10 in comparison with
that by pristine NZVI and silica-unsupported NZVI (NZVI
+ SiO2). Among the three materials,
NZVI/SiO2 presented
the highest Cr(VI) removal, especially
at pH 7 and 10 with 98 and 94.41%, within 60 min. This was due to
the adsorption of Cr(OH)3 and
Fe(OH)3 precipitates over SiO2 resulting
in availibilty of NZVI/SiO2’s
active sites. The proposed mechanism of Cr(VI)
removal by NZVI/SiO2 was
also described.
Keywords: Box-Behnken design; chromium; NZVI;
silica-supported nanoiron
ABSTRAK
Kajian ini bertujuan
untuk mengoptimumkan
keadaan sintesis besi skala nano
disokong silika
bervalensi sifar (NZVI/SiO2)
melalui kaedah
pemadatan koloid. Reka bentuk Box-Behnken (BBD)
telah digunakan
sebagai alat untuk
mencipta dan
menganalisis sampel 17 keadaan sintesis NZVI/SiO2.
Pemboleh ubah
bebas termasuk kepekatan etanol (0-100 vol%), silika (0.025-0.125 g) dan kelajuan goncangan (100-400 rpm).
Selain
itu, analisis varians
(ANOVA)
untuk model quadratik
tindak balas permukaan
telah digunakan
untuk menganggar hubungan statistik pemboleh ubah bebas.
Pengurangan prestasi
sintesis NZVI/SiO2 telah disemak melalui
penyingkiran Cr(VI)
tercemar dalam air. Sintesis NZVI/SiO2 optimum
telah disahkan
dengan 100 vol% kepekatan etanol, 0.075 g silika dan 100 rpm kelajuan goncangan. Bahan ini telah dicirikan
menggunakan pembelauan
sinar-x (XRD), mikroskop
elektron imbasan
dengan spektroskopi tenaga serakan sinar-x (SEM-EDX) dan
nitrogen penjerapan/penyahjerapan
yang menunjukkan kewujudan
fasa NZVI, komposisi
dan morfologi.
Kecekapan penyingkiran Cr(VI) NZVI/SiO2 telah diuji selanjutnya
pada larutan
pH 4, 7 dan 10 berbanding dengan NZVI asli dan NZVI tidak
disokong silika (NZVI/SiO2).
Antara ketiga-tiga bahan,
NZVI/SiO2 menunjukkan penyingkiran Cr(VI)
tertinggi, terutamanya pada pH 7 dan 10 dengan 98 dan 94.41% dalam masa 60 minit. Ini disebabkan penjerapan Cr(OH)3 dan mendakan Fe(OH)3 ke atas SiO2 yang
mengakibatkan ketersediaan
tapak aktif NZVI/SiO2.
Mekanisme cadangan
penyingkiran Cr(VI) oleh NZVI/SiO2 turut dibincangkan.
Kata kunci: Besi
nano disokong
silika; kromium; NZVI;
reka bentuk
Box-Behnken
REFERENCES
Anderson,
R.A. 1997. Chromium as an essential nutrient for
humans. Regulatory Toxicology Pharmacology 26: 35-41.
Astrup,
T., Stipp, S.L.S. & Christensen, T.H.
2000. Immobilization of chromate from coal fly ash leachate using an attenuating
barrier containing zero-valent iron. Environmental Science
& Technology 34: 4163-4168.
Blowes,
D.W., Ptacek, C.J. & Jambor,
J.L. 1997.
In situ remediation of Cr(VI) contaminated
ground water using permeable reactive walls: Laboratory studies.
Environmental Science & Technology 31: 3348-3357.
Chang, L.Y. 2005. Chromate reduction
in wastewater at different pH levels using thin iron wires-a laboratory
study. Environmental Progress 24: 305-316.
Chang, L.Y. 2003. Alternative chromium reduction and heavymetal
precipitation methods for industrial wastewater. Environmental
Progress 22: 174-182.
Chen, S.S., Cheng, C.Y., Li, C.W., Chai, P.H. &
Chang, Y.M. 2006.
Reduction of chromate from electroplating wastewater from
pH 1 to 2 using fluidized zero valent iron process. Journal of
Hazardous Materials 142: 362-367.
Coller-Myburgh, C.V., Rensburg, L.V. & Maboeta, M. 2014. Utilizing
earthworm and microbial assays to assess the ecotoxicity
of chromium mine wastes. Applied Soil
Ecology 83: 258-265.
Costa, M. 2003. Potential hazards of hexavalent chromate in our drinking water.
Toxicology and Applied Pharmacology 188: 1-5.
Dassi, D.,
Frikha, F., Zouari,
M.H., Belbahri, L., Woodward, S. &
Mechichi, T. 2012. Application of response
surface methodology to optimize decolourization
of dyes by the laccase-mediator system. Journal of Environmental
Management 108: 84-91.
Fu, R., Yang, Y., Xu, Z., Zhang, X., Guo,
X. & Bi, D. 2015. The removal of chromium (VI) and lead (II)
from groundwater using sepiolite-supported
nanoscale zero-valent iron (S-NZVI). Chemosphere 138: 726-734.
Guha, S.
& Bhargava, P. 2005. Removal of chromium from
synthetic plating waste by zero-valent iron and sulfate-reducing
bacteria. Water Environment Research 77: 411-416.
Katz, S.A. & Salem, H. 1993. The
toxicology of chromium with respect to its chemical speciation:
A review. Journal of Applied Toxicology 13: 217-224.
Kiattisaksiri, P., Khamdahsag, P., Khemthong, P., Pimpha, N. &
Grisdanurak, N. 2014. Photocatalytic degradation
of 2,4-dichlorophenol over Fe-ZnO catalyst under visible light. Korean
Journal of Chemical Engineering. DOI: 10.1007/ s11814-014-0379-6.
Kohn, T., Livi,
K.J.T., Roberts, A.L. & Vikesland,
P.J. 2005. Longevity
of granular iron in groundwater treatment processes: Corrosion product
development. Environmental Science & Technology 39: 2867-2879.
Li, X., Ai, L. & Jiang, J. 2016. Nanoscale
zerovalent iron decorated on graphene
nanosheets for Cr(VI) removal from
aqueous solution: Surface corrosion retard induced the enhanced
performance. Chemical Engineering Journal 288: 789-797.
Li, X.Q., Cao, J. & Zhang, W.X. 2008. Immobilization of hexavalent chromium with Iron nanoparticles: Characterizations
with high resolution X-ray photoelectron spectroscopy (HR-XPS).
Industrial & Engineering Chemistry Research 47: 2131-2139.
Liu, C., Fiol,
N., Poch, J. & Villaescusa,
L. 2016. A new technology for the treatment of chromium electroplating wastewater
based on biosorption. Journal of Water
Process Engineering 11: 143-151.
Mocellin, J., Mercier, G., Morel, J.L., Blais,
J.F. & Simonnot, M.O. 2015. Factors influencing the Zn and Mn extraction
from pyrometallurgical sludge in the steel
manufacturing industry. Journal of Environmental Management
158: 48-54.
Oh, Y.J., Song, H., Shin, W.S., Choi, S.J. & Kim, Y.H. 2007.
Effect of amorphous silica and silica sand on removal of chromium(VI)
by zero-valent iron. Chemosphere 66: 858-
865.
Padmavathy, K.S., Madhu, G. & Haseena, P.V. 2016. A study on effects
of pH, adsorption dosage, time, initial concentration and adsorption
isotherm study for removal of hexavalent chromium (Cr(VI))
from wastewater by magnetite nanoparticles. Procedia Technology
24: 585-594.
Powell, R.M. & Puls,
R.W. 1997. Proton generation by dissolution of intrinsic
or augmented aluminosilicate minerals
for in situ contaminant remediation by zero-valence-state iron.
Environmental Science & Technology 31: 2244-2251.
Powell, R.M., Puls,
R.W., Hightower, S.K. & Sabatini, D.A. 1995. Coupled
iron corrosion and chromate reduction: Mechanisms for subsurface
remediation. Environmental Science & Technology 29: 1913-1922.
Sass, B.M. & Rai, D. 1987. Solubility
of amorphous chromium(III)-iron(III) hydroxide
solid-solution. Inorganic Chemistry 26: 2228-2232.
Shih, Y.J., Chen, C.W., Hsia, K.F. &
Dong, C.D. 2015. Granulation for extended-release of nanoscale
zero-valent iron exemplified by hexavalent chromium reduction in
aqueous solution. Separation and Purification Technology
156: 1073-1081.
Tanboonchuy, V., Grisdanurak, N. & Liao, C.H.
2012. Nitrate probe for quantifying reducing power of nanoscale zero-valent
iron. Sustainable Environment Research 22: 185-191.
Tanboonchuy, V., Hsu, J.C., Grisdanurak, N. &
Liao, C.H. 2011. Gas-bubbled nano zero-valent iron process
for high concentration arsenate removal. Journal of Hazardous
Materials 186: 2123-2128.
Tantriratan, P., Wirojanagud, W., Neramittagapong, S., Wantala, K.
& Grisdanurak, N. 2011. Optimization for UV-photocatalytic degradation of paraquat over titanium dioxide supported on rice husk silica
using Box-Behnken design. Indian
Journal of Chemical Technology 18: 363-371.
Toli, A., Chalastara, K., Mystrioti, C., Xenidis, A. &
Papassiopi, N. 2016. Incorporation of zero
valent iron nanoparticles in the matrix of cationic resin beads
for the remediation of Cr(VI) contaminated
waters. Environmental Pollution 214: 419-429.
Tripathi, P., Srivastava, V.C. & Kumar, A. 2009. Optimization of an azo dye batch adsorption parameters using Box-Behnken design. Desalination 249: 1273-1279.
Vikesland, P.J., Klausen, J., Zimmermann, H., Roberts,
A.L. & Ball, W.P. 2003. Longevity of granular iron
in groundwater treatment processes: Changes in solute transport
properties over time. Journal of Contaminant Hydrology 64:
3-33.
Wang, Q., Snyder, S., Kim, J. & Choi, H. 2009. Aqueous ethanol
modified nanoscale zerovalent iron in
bromate reduction: Synthesis, characterization and reactivity. Environmental
Science & Technology 43: 3292-3299.
World Health Organization (WHO). 2004.
Guidelines for Drinking-water
Quality. 3rd ed. Recommendations. WHO,
Geneva. 1: 334-335.
Wu, C., Li, C., Leng,
D. & Cui, D. 2016. Factors affecting the reductive properties
of the core-shell Sio2-coated iron nanoparticles. Advances in
Chemical Engineering and Science 6: 316-323.
Wu, L., Liao, L., Lv,
G. & Qin, F. 2015. Stability and pH-independence of nano-zero-valent iron intercalated montmorillonite and its
application on Ce(VI) removal. Journal
of Contaminant Hydrology 179: 1-9.
Yirsaw, B.D., Megharaj, M., Chen, Z. & Naidu,
R. 2016. Reduction of hexavalent chromium by green synthesized nano zero valent iron and process optimization using response
surface methodology. Environmental Technology & Innovation
5: 136-147.
Zhang, Y., Li, Y., Li, J., Hu, L. &
Zheng, X. 2011. Enhanced removal of nitrate by a novel composite: Nanoscale zero
valent iron supported on pillared clay. Chemical Engineering
Journal 171: 526-531.
Zhou,
X., Lv, B., Zhou, Z., Li, W. & Jing,
G. 2015. Evaluation of
highly active nanoscale zero-valent iron coupled with ultrasound
for chromium(Vi) removal. Chemical Engineering Journal 281:
155-163.
*Corresponding author; email: visanu@kku.ac.th
|