Sains Malaysiana 46(5)(2017): 677–684
http://dx.doi.org/10.17576/jsm-2017-4605-01
Uniaxial
Compressive Strength of Antarctic Peninsula Rocks: Schmidt Hammer
Rebound
Test
(Kekuatan
Mampatan Sepaksi Batuan Semenanjung Antartika: Ujian Pantulan Tukul
Schmidt)
GOH THIAN LAI1*, NUR AMANINA MAZLAN1, MOHD SHAHRUL MOHD NADZIR1, ABDUL GHANI RAFEK2, AILIE SOFYIANA SERASA3, AZIMAH HUSSIN1, LEE KHAI ERN4
& FOONG SWEE YEOK5
1School of
Environmental and Natural Resource Sciences, Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Department of
Geosciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh,
Perak Darul Ridzuan, Malaysia
3Chemical and
Petroleum Engineering Department, Faculty of Engineering, Technology
and Built Environment, UCSI University, 56000 Cheras, Kuala Lumpur, Federal
Territory
Malaysia
4Institute for
Environment and Development (LESTARI), Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
5School
of Biological Science, Universiti Sains Malaysia, Minden, 11800 Penang, Pulau
Pinang
Malaysia
Received:
27 May 2016/Accepted: 18 October 2016
ABSTRACT
The uniaxial compressive strength test is a destructive and time
consuming test. A number of non-destructive methods using portable testing
equipment are more applicable and easier to conduct. This paper presents the
results of a systematic approach to determine the uniaxial compressive strength
of rock material using the Schmidt hammer rebound test. A total of five
distinct locations (Graham Coast, Davis Coast, Nanson Island, Danco Coast and
Trinity Island) were tested using the Schmidt rebound hammer test. Peninsula
Antarctic located at northwest of Antarctic region comprising of igneous and
metamorphic rocks. Statistical analysis of the results at 95% confidence level
showed the Schmidt rebound value of the Graham Coast ranges from 40±1.7 to
41±1.3 with standard deviation of 8.2 to 6.4. The rebound value for Davis Coast
was 39±1.6 with standard deviation of 7.7. Rocks from Nanson Island and Danco
Coast have the Schmidt rebound value of 54±1.7 with standard deviation of 8.0
and 36±1.3 with standard deviation of 6.2, respectively. The Schmidt rebound
value of rocks at Trinity Island ranges from 29±1.4 to 32±1.7 with standard
deviation of 6.8 to 8.1. Thus, the respective uniaxial compressive strengths of
rock materials from Graham Coast, Davis Coast, Danco Coast, Nanson Island and
Trinity Island were 73-108, 50, 59, 164 and 45-59 MPa. The respective ISRM strength classification of rock materials of Graham Coast, Davis
Coast, Danco Coast, Nanson Island and Trinity Island were strong (R4) to very
strong rock (R5), medium strong rock (R3), strong rock (R4), very strong rock
(R5) and medium strong (R3) to strong rock (R4). The results showed a mean of
quantification of rock material strength based on the Schmidt Hammer rebound
test in Antarctic Peninsula.
Keywords: Rock material; Schmidt hammer rebound value; uniaxial
compressive strength
ABSTRAK
Ujian kekuatan mampatan sepaksi adalah ujian memusnah dan memakan
masa. Beberapa kaedah tidak-musnah yang menggunakan peralatan ujian
mudah alih adalah lebih diterima pakai dan mudah untuk dijalankan.
Kertas ini membentangkan keputusan menggunakan pendekatan yang sistematik
untuk menentukan kekuatan mampatan sepaksi bahan batu dengan menggunakan
ujian pantulan tukul Schmidt. Sebanyak lima lokasi (Pantai Graham,
Pantai Davis, Pulau Nanson, Pantai Danco dan Pulau Trinity) telah
diuji menggunakan ujian pantulan tukul Schmidt. Semenanjung Antartik
yang terletak di barat laut Wilayah Antartik terdiri daripada batuan
igneus dan metamorfik. Keputusan analisis statistik pada tahap keyakinan
95% menunjukkan nilai pantulan Schmidt pantai Graham berjulat dari
40±1.7 ke 41±1.3 dengan sisihan piawai sebanyak 8.2 ke 6.4. Nilai
pantulan pantai Davis adalah 39±1.6 dengan sisihan piawai sebanyak
7.7. Batuan dari Pulau Nanson dan Pantai Danco mempunyai nilai pantulan
Schmidt masing-masing sebanyak 54±1.7 dengan sisihan piawai 8.0
dan 36±1.3 dengan sisihan piawai sebanyak 6.2. Nilai pantulan Schmidt
untuk batuan di Pulau Trinity adalah dari 29±1.4 hingga 32±1.7 dengan
sisihan piawai sebanyak 6.8 ke 8.1. Oleh itu, kekuatan mampatan
sepaksi bahan batuan masing-masing dari Pantai Graham, Pantai Davis,
Pantai Danco, Pulau Nanson dan Pulau Trinity adalah 73-108, 50,
59, 164 dan 45-59 MPa. Pengelasan kekuatan ISRM bahan
batuan untuk Pantai Graham, pantai Davis, Pantai Danco, Pulau Nanson
dan Pulau Trinity masing-masing adalah kuat (R4) ke batuan yang
sangat kuat (R5), batuan sederhana kuat (R3), batuan kuat (R4),
batuan sangat kuat (R5) dan sederhana kuat (R3) ke batuan kuat (R4).
Keputusan ini menunjukkan satu purata kekuatan bahan batuan secara
kuantitatif berdasarkan ujian pantulan tukul Schmidt di Semenanjung
Antartik.
Kata kunci: Bahan batuan; kekuatan mampatan sepaksi;
nilai pantulan tukul Schmidt
REFERENCES
Adie,
A.J. 1962. The geology of Antarctica. Antarctic
Research: The Matthew Fontaine Maury Memorial Symposium 7: 26-38.
Aufmuth,
R.E. 1973. A systematic determination of engineering criteria
for rocks. Bull. Assoc. Eng. Geol. 11: 235- 245.
Craddock,
C. 1970. Tectonic Map of Antarctica. New York:
American Geographical Society.
Christine, E. 2000. A
review of rock weathering in Antarctica and its relationship to studies in the
Northern Hemisphere. GCAS. University of Canterbury (Unpublished).
Deere,
D.U. & Miller, R.P. 1966. Engineering classification and
index properties for intact rocks. Tech Report Air Force Weapons Lab.
pp. 65-116.
Eagles,
G. 2003. Tectonic evolution of the Antarctic Phoenix plate system
since 15 Ma. Earth and Planetary Science Letters 217: 97-109.
Elliot,
D.H. 1975. Tectonics of Antarctica: A review. American Journal of Science 275:
45- 106.
Elliott,
C.E. 2006. Physical rock weathering along the Victoria Land Coast, Antarctica.
PhD Dissertation, University of Canterbury (Unpublished).
Fitzgerald,
P. 2002. Tectonics and landscapes evolution of the Antarctic
plate since the breakup of Gondwana, with an emphasis on the West Anatrctic
Rift System and the Transantarctic Mountains. Royal Society of New
Zealand Bulletin 35: 453-469.
Guild,
P.W., Piper, D.Z., Lee, M.P., McCoy, F.W., Manhein, F.T., Lane-Bostwick, C.M.,
Swint-Iki, T.R., Grye, G. & Luepke, G. 1998. Explanatory notes for the
mineral-resources map of the Circum-Pacific Region Antarctic sheet. US.
Geological Survey.
Güney,
A., Alt?ndağ, R., Yavuz, H. & Saraç, S. 2005. Evaluation of the
relationships between schmidt hardness rebound number
and other (engineering) properties of rocks. The 19th International Mining
Congress and Fair of Turkey 19: 83-89.
Harley,
S.L. 2007. The geology of Antarctica. Encyclopedia of Life Support Systems.
Harley, S.L., Fitzsimons, I.C.W. & Yue, Z. 2013. Antarctica and supercontinent evolution: Historical perspectives, recent
advances and unresolved issues. Geological Society, London. 383: 1-34.
Lim,
H-S., Jang, B-A., Kim, J-H. & Kang, S-S. 2015.
Estimation of R-value and uniaxial compressive strength of rocks around the
King Sejong Station, Barton Peninsula, Antarctica from SilverSchmidt Q-value. Tunnel
& Underground Space 25(2): 199-209.
ISRM.
1978. Suggested methods for the quantitative description of discontinuities in
rock masses. International Journal Rock Mechanics Mining Science and
Geomechanics Abstract 15: 319-368.
Karaman,
K. & Kesimal, A. 2015. Correlation of Schmidt rebound hardness with
uniaxial compressive strength and P- wave velocity of rock materials. Arabian
Journal for Science and Engineering 40(7): 1897-1906.
Katz,
O., Reches, Z. & Roegiers, J.C. 2000. Evaluation of
mechanical rock properties using a Schmidt hammer. Int. J. Rock Mech.
Min. Sci. 37: 723-728.
Larter,
R.D., Cunningham, A.P., Barker, P.F., Gohl, K. & Nitsche, F.O. 2002. Tectonic evolution of the Pacific margin of Antarctica 1. Late Cretaceous tectonic reconstructions. Journal of
Geophysical Research 107(B12): EPM 5-1-EPM 5-19.
Majewski, W. 2000. Cape Roberts
Project: Investigating the Cenozoic history of Antarctica. Polish Polar
Research 21(2): 89-97.
Murat Yurdakul, Ceylan, H. & Akdas, H. 2011. A
predictive model for uniaxial compressive strength of carbonate rocks from
Schmidt hardness. Civil, Construction and Environmental Engineering
Conference Presentations and Proceedings. p. 7.
Ramli Nazir, Momeni, E., Armaghani, D.J. & Amin, M.F.M.
2013. Prediction of unconfined compressive strength of limestone
rock samples using L-type Schmidt hammer. EJGE 18: 1768-1775.
Riffenburgh, B. 2007. Encyclopedia
of the Antarctic. London, Routledge: Taylor and Francis Group.
Rist, M.A., Sammonds, P.R., Murrell, S.A.F., Meredith, P.G.,
Oerter, H. & Doake, C.S.M. 1996. Experimental
fracture and mechanical properties of Antarctic ice: Preliminary results. Ann.
Glaciol. 23: 284-292.
Selby,
M.J. 1980. A rock mass strength classification for geomorphic purposes: With
tests from Antarctica and New Zealand. Z. Geomorpho. 24: 31-51.
Shalabi,
F.I., Edward, J.C. & Al-Hattamleh, O.H. 2007. Estimation
of rock engineering properties using hardness tests. Engineering
Geology 90: 138-147.
Singh,
R.N., Hassani, F.P. & Elk?ngton, P.A.S. 1983. The application of strength
and deformation index testing to the stability assessment of coal measures
excavations Proc. 24th US Symp. on Rock Mech.,
Texas A&M Univ. AEG Balkema, Rotterdam. pp. 599-609.
Szilágyi,
K. & Borosnyói, A. 2009. 50 years of experience with the Schmidt rebound
hammer. Concrete Structure.
Tabatabaei,
S.H. 2003. Assessment of Schmidt rebound hammer for determination of uniaxial
compressive strength. Journal of Engineering Geology 1(3): 271 -280.
Torabi, S.R., Ataei, M. & Javanshir, M. 2010. Application of Schmidt rebound number for estimating rock strength under
specific geological conditions. Journal of Mining & Environment 1(2):
1- 8.
*Corresponding
author; email: gdsbgoh@gmail.com
|