Sains Malaysiana 46(5)(2017): 733–741
http://dx.doi.org/10.17576/jsm-2017-4605-08
Effect
of Electrolyte (NaCl) and Temperature on the Mechanism of Cetyl
Trimethylammonium Bromide Micelles
(Kesan
Elektrolit (NaCl) dan Suhu terhadap Mekanisme Setil Trimetilammonium
Bromida
Misel)
ZIA UL HAQ1, NOOR REHMAN2*, FARMAN ALI2, NASIR MEHMOOD KHAN2
& HIDAYAT ULLAH3
1Department of
Chemistry, Gomal University, D.I. Khan, Pakistan
2Department of Chemistry,
Shaheed BB University, 18000, Sheringal, Dir (Upper), Pakistan
3Institute
of Chemical Sciences, University of Peshawar, 25000, Pakistan
Received:
16 July 2016/Accepted: 24 October 2016
ABSTRACT
In the last few decades, surfactants and electrolytes interaction
has gained considerable attention of researchers due to their
industrial and domestic applications. In this work, the effects
of electrolyte (NaCl) on the critical micelle concentration
(CMC) of the cationic surfactant
cetyltrymethyl ammonium bromide (CTAB) at different temperatures
were investigated through different techniques such as conductometry,
surface tensiometer and viscosimeter. The results showed that
the values of CMC
of CTAB
decreased with the increase in temperature as
well as with the addition of NaCl. The value of CMC for pure CTAB was
calculated 0.98M at 303K, which was observed to decrease as
temperature increased and got value of 0.95M at 318K. Moreover
the addition of electrolyte NaCl into the surfactant lead
to lowering of the CMC and
obtained value of 0.90M at 3M of NaCl, indicating significant
electrostatic interactions between surfactant and electrolyte.
Moreover the degree of ionization(α) calculated for pure
cationic surfactant CTAB was
0.219, which tends to increase with the addition of electrolyte,
while that of counter ion binding values (β) was observed
to decrease from 0.780 to 0.201. Furthermore, the conductivity
of charged micelle of surfactant and free ions of electrolyte
contributed to electric conductivity of aqueous micellar solution
of surfactant. The results can be helpful to develop better
understanding about interaction between electrolyte and surfactant.
Keywords: Electrical conductance; electrolyte NaCl; surface
tension; surfactant CTAB; viscosity
ABSTRAK
Beberapa dekad kebelakangan ini, surfaktans dan interaksi elektrolit
telah mendapat perhatian para penyelidik kerana kegunaannya
dalam perindustrian dan domestik. Dalam kertas ini, kesan
elektrolit (NaCl) ke atas kepekatan kritikal misel (CMC) of kationik surfaktans setiltrimetil
ammonium bromida (CTAB) pada suhu yang berbeza telah dikaji
melalui teknik yang berbeza seperti konduktometri, permukaan
tensiometer dan meter kelikatan. Hasil kajian menunjukkan
bahawa nilai CMC untuk
CTAB
berkurang dengan peningkatan suhu serta penambahan
NaCl. Nilai CMC
untuk CTAB
tulen ialah 0.98M pada 303K dan diperhatikan
menurun apabila suhu meningkat dan memperoleh nilai 0.95M
pada 318K. Selain itu, penambahan elektrolit NaCl ke dalam
surfaktans membawa kepada penurunan CMC ini
dan memperoleh nilai 0.90M pada 3M NaCl yang menunjukkan interaksi
elektrostatik yang penting antara surfaktans dan elektrolit.
Tambahan pula, darjah pengionan(α) yang dikira untuk
surfaktans kationik tulen CTAB ialah
0.219, yang cenderung untuk meningkat dengan penambahan elektrolit,
manakala perbandingan nilai ikatan ion (β) diperhatikan
menurun daripada 0.780 untuk 0.201. Seterusnya, konduktiviti
misel bercaj surfaktans dan elektrolit ion bebas menyumbang
kepada kekonduksian elektrik larutan akueus misel surfaktans.
Keputusan kajian diharap dapat membantu meningkatkan pemahaman
interaksi antara elektrolit dan surfaktans.
Kata kunci: Elektrolit NaCl; CTAB
surfaktans; kekonduksian elektrik; kelikatan;
ketegangan permukaan
REFERENCES
Abuin, E. & Scaiano, J.C. 1984. Exploratory study of the
effect of polyelectrolyte surfactant aggregates on photochemical behavior. Journal
of Americian Chemical Society 106: 6274-1983.
Anaker, E.W. & Ghose, H.M. 1968. Counterions and micelle
size. II. Light scattering by solutions of cetylpyridinium salts. Journal of
American Chemical Society 90: 3161-3166.
Anaker, E.W. & Ghose, H.M. 1963. Counterions and micelle
size. I. light scattering by solutions of dodecyltrimethylammonium salts. Journal
of Physical Chemistry 67: 1713-1716.
Antonello, D.C., Pietro, D.P., Gabriella, S., Romina, Z.
& Antonella, F. 2016 Optimizing the interaction of surfactants with
graphitic surfaces and clathrate hydrates. Langmuir 32: 6559-6570.
Bakshi, M.S. & Kaur, I. 2003. Head group modification
controlled mixing behaviour of binary cationic surfactants: conductometry,
viscometry and NMR studies. Journal of Colloid Polymer Science 281:
935-944.
Balakrishnan, V.K., Buncel, E. & Vanlood, G.W. 2005.
Micellar catalyzed degradation of fenitrothion, an organophosphorus pesticide,
in solution and soils. Environmental Science &Technology 39:
5824-5830.
Caron, J.E.G., Beaulieu, S. & Perron, G. 1995.
Thermodynamic micellar properties of n-octyldimethylamine oxide hydrochloride
in water. Langmuir 11: 1905-1911.
Chiranjeevi, P. & Vinod, L. 2009. Effect of molecular
structure of cationic surfactants on biophysical interactions of the
surfactant-modified nanoparticles with a model membrane and cellular uptake. Langmuir 17: 2369-2377.
Gamboa, C., Rios, H. & Sepulveda, L. 1989. Effect of the
nature of counterions on the sphere-to-rod transition in cetyltrimethylammonium
micelles. Journal of Physical Chemistry 93: 5540-5543.
Ghos, S. 2001. Surface chemical and micellar properties of
binary and ternary surfactant mixtures (Cetyl Pyridinium Chloride, Tween-40,
and Brij-56) in aqueous medium. Journal of Colloid Interface Science 244:
128-138.
Ghos, S. & Moulik, S.P. 1998. The clouding behaviours of
binary mixtures of polyoxyethylene (10) cetylether (Brij-56) with polyvinyl
alcohol (PVA) and methyl cellulose (MC). Journal of Colloid Interface
Science 357: 201-208.
Graciani, M., Munoz, M., Rodriguez, A. & Moya, M.L.
2005. Water-N,N-dimethylformamide alkyltrimethylammonium bromide micellar
solutions: Thermodynamic, structural, and kinetic studies. Langmuir 21:
3303-3310.
Hoff, E., Nystrom, B. & Lindman, B. 2001.
Polymer-surfactant interactions in dilute mixtures of a nonionic cellulose
derivative and an anionic surfactant. Langmuir 17: 28-34.
Kameyama, K., Muroya, A. & Takagi, T. 1997. Properties
of a mixed micellar system of sodium dodecyl sulfate and octylglucoside. Journal
of Colloid Interface Science 196: 48-52.
Knaebel, A. & Oda, R. 2000 Lamerall structure aqueous
solutions of a dimeric surfactant. Langmuir 16: 2489-2494.
Li, M., Li, Y.Z., Hua, H., He, X. & Li, Y. 2003. Studies
on 1-dodecene hydroformylation in biphasic catalytic system containing mixed
micelle. Journal of Molecular Catalysis A 194: 13-17.
Lindman, B. & Wennerstrom, H. 1980. Miceles. Amphiphile
aggregation in aqueous solution. Topics in Current Chemistry 87: 1-87.
Neumann’, M.G. & Tiera, M.J. 1997. Photochemical
determination of the interactions between surfactants and polyelectrolytes. Journal
of Pure & Applied Chemistry 69(4): 791-795.
Paredes, S., Sepulveda, L. & Tribout, M. 1984.
Enthalpies of micellization of the quaternary tetradecyl- and -cetyl ammonium
salts. Journal of Physical Chemistry 88: 1871- 1875.
Pethica, A. 1954. Surface tension of aqueous solutions of
dodecyldimethylammonium chloride, and its adsorption on aqueous surfaces. Trans
Faraday Society 50: 412-419.
Rakshit, A.K. & Sharma, B. 2003. The effect of amino
acids on the surface and thermodynamic properties of poly [oxyethylene (10)]
lauryl ether in aqueous solution. Colloid Polymer Science 281: 45-51.
Ramanathan, M., Shrestha, L.K., Mori, T., Ji, Q., Hill, J.P.
& Ariga, K. 2013. Amphiphile nanoarchitectonics: From basic physical
chemistry to advanced applications. Physical Chemistry 15: 10580-10611.
Rio, J.M., Prieto, G., Sarmieto, F. & Mosquera, V. 1995.
Thermodynamics of micellization of N-octyltrimethylammonium bromide in
different media. Langmuir 11: 1511-1514.
Rosen, M.J., Cohen, A.W., Dahanayake, M. & Hua, X. 1982.
Relationship of structure to properties in surfactants. 10. Surface and
thermodynamic properties of 2-dodecyloxypo ly(ethenoxyethanol)s,
C12H25(OC2H4)xOH, in aqueous solution. Journal of Physical Chemistry 86:
541-545.
Schweitzer, B., Felippe, A.C., Bo, A.D., Minatti, E.,
Zanette, D. & Lopes, A. 2006. Journal of Colloid Interface Science 298:
457-466.
Sharma, B.G. & Rakshit, A.K. 1989. In Surfactants in
Solution, edited by Mittal, K.L. New York: Plenum Press. 7: 319-329.
Sharma, B.G. & Rakshit, A.K. 1989. Thermodynamics of
micellization of a nonionic surfactant: Brij 35 in aquo-sucrose solution. Journal
of Colloid Interface Science 129: 139-144.
Shinoda, K., Kobyashi, M. & Yamaguchi, N. 1987. Effect
of “Iceberg” formation of water on the enthalpy and entropy of solution of
paraffin chain compounds: The effect of temperature on the critical micelle
concentration of lithium perfluorooctane sulfonate. Journal of Physical
Chemistry 91: 5292-5294.
Sudha, M., Renu, L., Neeti, S., Rajendra, J., Narain, D.,
Kandpal & Kiran, P. 2012. Micellar properties of linear alkyl benzene
sulphonate in aqueous glucose solution. Journal of Chemical and
Pharmaceutical Research 4: 4468-4476.
Sujit, K.S., Sujeet, K.C. & Ajaya, B. 2016. The effect
of methanol on the micellar properties of dodecyltrimethylammonium bromide
(DTAB) in aqueous medium at different temperatures. Journal of Surfactants
and Detergents 19: 201-207.
Urata, K. & Takaishi, N. 2001. A perspective on the
contribution of surfactants and lipids toward “Green Chemistry”: Present states
and future potential. Journal of Surfactants and Detergents 4: 191-200.
Zana, R., Yiv, S., Strazielle, C. & Lianos, P. 1981.
Effect of alcohol on the properties of micellar systems: I. Critical
micellization concentration, micelle molecular weight and ionization degree,
and solubility of alcohols in micellar solutions. Journal of Colloid
Interface Science 80: 208-223.
Zhu,
B.Y. & Zhao, Z.G. 1996. Foundation of Interface Chemistry. Beijing:
Chemical Industry Press. pp. 84-93.
*Corresponding
author; email: noorrehman@sbbu.edu.pk