Sains Malaysiana 46(5)(2017): 783–793

http://dx.doi.org/10.17576/jsm-2017-4605-13

 

Low Pressure DC-Plasma System for the Modification of Polymeric Membrane Surfaces

(Sistem DC-Plasma Tekanan Rendah untuk Pengubahsuaian Permukaan Membran Polimer)

 

CHALAD YUENYAO1,2,3*, THAWAT CHITTRAKARN1,2, YUTTHANA TIRAWANICHAKUL1,2 & HIDEKI NAKAJIMA4

 

1Department of Physics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112

Thailand

 

2Membrane Science and Technology Research Center, Department of Physics, Faculty of Science

Prince of Songkla University, Hatyai, Songkhla 90112, Thailand

 

3ThEP Center, CHE, 328 Si Ayutthaya Rd., Bangkok 10400, Thailand

 

4Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand

 

Received: 27 June 2016/Accepted: 24 October 2016

 

ABSTRACT

The main objectives of this work were to develop a lab-scale direct current (DC) glow discharges plasma system for modification of organic and inorganic membranes. Characteristics of plasma system were presented under the discharge of five gases (Ar, N2, air, O2, and CO2). A Langmuir double probe was used for the evaluation of the electron temperature (Te) and electron density (ne) of plasmas. The current and voltage (I-V) characteristic curves were analyzed. Relationships between breakdown voltage (VB) of gases and products of gas pressure and inter-electrode gap (pd) were studied in form of Paschen curves. The results showed that Te of plasma in various gases was in the range of 4-13 eV, while the ne varied between 108 and 109 cm-3. The plasma generated at different gas pressure and applied voltage is in the normal and abnormal modes. Finally, the constructed DC-plasma system was utilized for modification of polymeric membrane surfaces. Treatment time, discharge power and type of gas were varied. The tailoring of membrane surfaces was analyzed through the water contact angle and percent-weight loss (PWL) measurements, DMTA, AFM, XPS and FTIR spectrum. It could be shown that DC-plasma from this system can be used to modify the surface of polymeric membranes.

 

Keywords: Breakdown voltage; characterization; DC discharge plasma; Langmuir double probe; polymeric membrane

 

ABSTRAK

Objektif utama kajian ini adalah untuk membangunkan satu skala makmal arus terus (DC) cahaya buangan sistem plasma untuk pengubahsuaian membran organik dan bukan organik. Pencirian sistem plasma telah ditunjukkan dengan penyingkiran lima gas (Ar, N2, udara, O2 dan CO2). Prob berganda Langmuir digunakan untuk menilai suhu elektron (Te) dan ketumpatan elektron (ne) plasma. Pencirian arus dan voltan (I-V) lengkung dianalisis. Hubungan antara gas pembelah voltan (VB) dan produk tekanan gas serta jurang antara elektrod (pd) telah dikaji dalam bentuk lengkung Paschen. Keputusan menunjukkan bahawa Te plasma dalam pelbagai gas adalah dalam lingkungan 4-13 eV, manakala ne berjulat antara 108 dan 109 cm-3. Plasma yang dihasilkan pada tekanan gas yang berbeza dan voltan gunaan adalah dalam mod normal dan tidak normal. Kesimpulannya, sistem DC-plasma yang dibina digunakan untuk pengubahsuaian permukaan membran polimer. Masa rawatan, kuasa pelepasan dan jenis gas telah berubah. Pengukuran permukaan membran dianalisis melalui sudut sentuh air dan pengukuran kehilangan peratus berat (PWL), spektrum DMTA, AFM, XPS dan FTIR. Ia dapat ditunjukkan bahawa DC-plasma daripada sistem ini boleh digunakan untuk mengubah suai permukaan membran polimer.

 

Kata kunci: Membran polimer;  pecahan voltan; pencirian; penyingkiran DC plasma; prob berganda Langmuir

REFERENCES

 

Al-Itry, R., Lamnawar, K. & Maazouz, A. 2012. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability 97(10): 1898-1914.

Bennett, J.R.J., Edgecock, T.R., Gray, S.A. & McFarland, A.J. 2010. Tungsten material properties at high temperature and high stress. Journal of Nuclear Materials. https://arxiv.org/ abs/1010.2905.

Bogaerts, A. 1996. Mathematical modeling of a direct current glow discharge in argon. PhD Thesis, Universiteit Antwerpen (Unpublished).

Bryjak, M., Gancarz, I. & Pozniak, G. 2000. Plasma-modified porous membranes: Review. Chemical Papers 54(6b): 496- 501.

Castro, R.M., Cirino, G.A., Verdonck, P., Maciel, H.S., Massi, M., Pisani, M.B. & Mansano, R.D. 1999. A comparative study of single and double Langmuir probe techniques for RF plasma characterization. Contributions to Plasma Physics 39(3): 235-246.

Chen, S.H., Liou, R.M., Lin, Y.Y., Lai, C.L. & Lai, J.Y. 2009. Preparation and characterizations of asymmetric sulfonated polysulfone membranes by wet phase inversion method. European Polymer Journal 45(4): 1293-1301.

Chiad, B.T., Al-zubaydi, T.L., Khalaf, M.K. & Khudiar, A.I. 2009. Construction and characterization of a low pressure plasma reactor using dc glow discharge. Journal of Optoelectronics and Biomedical Materials 1(3): 255-262.

Choi, S.H., Lee, M.K., Oh, S.J. & Koo, J.K. 2003. Gas sorption and transport of ozone-treated polysulfone. Journal of Membrane Science 221(1-2): 37-46.

Chu, P.K., Chen, J.Y., Wang, L.P. & Huang, N. 2002. Plasma-surface modification of biomaterials. Materials Science and Engineering R: Reports 36(5-6): 143-206.

D’Agostino, R. 1990. Plasma Deposition, Treatment, and Etching of Polymers. New York: Academic Press.

Elghazaly, M.H. & Solyman, S. 2007. Electron impact ionization and excitation rate coefficients in the negative glow region of a glow discharge. Journal of Quantitative Spectroscopy and Radiative Transfer 103(2): 260-271.

Franz, G. 2009. Low Pressure Plasmas and Microstructuring Technology. London: Springer Dordrecht Heidelberg. pp. 307-359.

Gancarz, I., Pozniak, G. & Bryjak, M. 2000. Modification of polysulfone membranes: 3. Effect of nitrogen plasma. European Polymer Journal 36: 1563-1569.

Hwang, J.W., Cho, K., Yoon, T.H. & Park, C.E. 2000. Effects of molecular weight of polysulfone on phase separation behavior for cyanate ester/polysulfone blends. Journal of Applied Polymer Science 77: 921-927.

Johnson, E.O. & Malter, L. 1950. A floating double probe method for measurements in gas discharges. Physical Review 80(1): 58-68.

Khulbe, K.C., Feng, C. & Matsuura, T. 2010. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science 115: 855-895.

Kushwaha, O.S., Avadhani, C.V. & Singh, R.P. 2014. Effects of UV rays on degradation and stability of high performance polymer membranes. Advanced Materials Letters 5(5): 272-279.

Lieberman, M.A. & Lichtenberg, A.J. 2005. Principles of Plasma Discharges and Materials Processing. 2nd ed. New Jersey: John Wiley & Sons, Inc. pp. 450-470.

Lisovskiy, V.A., Yakovin, S.D. & Yegorenkov, V.D. 2000. Low-pressure gas breakdown in uniform dc electric field. Journal of Physics D: Applied Physics 33: 2722-2730.

Lee, W.J., Kim, D.S. & Kim, J.H. 2000. Preparation and gas separation properties of asymmetric polysulfone membranes by a dual bath method. Korean Journal of Chemical Engineering 17(2): 143-148.

Matsuyama, H., Teramoto, M. & Hirai, K. 1995. Effect of plasma treatment on CO2 permeability and selectivity of poly(dimethylsiloxane) membrane. Journal of Membrane Science 99(2): 139-147.

Modarresi, S., Soltanieh, M., Mousavi, S.A. & Shabani, I. 2012. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 separation. Journal of Applied Polymer Science 124: E199-E204.

Naz, M.Y., Ghaffar, A., Rehman, N.U., Naseer, S. & Zakaullah, M. 2011. Double and triple Langmuir probes measurements in inductively coupled nitrogen plasma. Progress in Electromagnetics Research 114: 113-128.

Naz, M.Y. & Ghaffar, A. 2011. Symmetric and asymmetric double Langmuir probes characterization of radio frequency inductively coupled nitrogen plasma. Progress in Electromagnetics Research 115: 207-221.

Nisha, M., Saji, K.J., Ajimsha, R.S., Joshy, N.V. & Jayaraj, M.K. 2006. Characterization of radio frequency plasma using Langmuir probe and optical emission spectroscopy. Journal of Applied Physics 99(3): 033304.

Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. & Gao, C. 2009. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Applied Surface Science 255: 3965-3971.

Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. & Bousmina, M. 2008. The effect of glow discharge plasma on the surface properties of poly(ethylene terephthalate) (PET) film. Surface and Coatings Technology 202(17): 4218-4226.

Pesek, S.C. & Koros, W.J. 1993. Aqueous quenched asymmetric polysulfone membranes prepared by dry/wet phase separation. Journal of Membrane Science 81: 71-88.

Raizer, Y.P. 1991. Gas Discharge Physics. Germany: Springer- Verlag Berlin Heidelberg.

Roth, J.R. 2000. Industrial Plasma Engineering. Volume 1 Principle. Philadelphia: IOP Publishing Ltd.

Sanaee, Z., Mohajerzadeh, S., Zand, K., Gard, F.S. & Pajouhi, H. 2011. Minimizing permeability of PET substrates using oxygen plasma treatment. Applied Surface Science 257: 2218-2225.

Silberberg, M.S. 2006. Chemistry: The Molecular Nature of Matter and Change. 4th ed. New York: McGraw-Hill Companies, Inc. pp. 312-356.

Singh, S.B., Chand, N. & Patil, D.S. 2009. Langmuir probe diagnostics of microwave electron cyclotron resonance (ECR) plasma. Vacuum 83: 372-377.

Svorcik, V., Kotal, V., Slepicka, P., Blahova, O., Spirkova, M., Sajdl, P. & Hnatowicz, V. 2006. Modification of surface properties of polyethylene by Ar plasma discharge. Nuclear Instruments and Methods in Physics Research Section B 244: 365-372.

Vidaurre, E.F.C., Achete, C.A., Simao, R.A. & Habert, A.C. 2001. Surface modification of porous polymeric membranes by RF-plasma treatment. Nuclear Instruments and Methods in Physics Research Section B 175-177: 732-736.

Vijayalakshmi, K.A., Mekala, M., Yogan, C.P. & Pandiyaraj, K.N. 2012. Studies on adhesive properties of polypropylene (PP) and polycarbonate (PC) film surfaces using DC glow discharge plasma. International Journal of Physical Science 7(15): 2264-2273.

Volkov, V.V., Ibragimov, R.G., Abdullin, I.Sh., Gallyamov, R.T., Ovcharova, A.A. & Bildyukevich, A.V. 2016. Modification of polysulfone porous hollow fiber membranes by air plasma treatment. Journal of Physics: Conference Series 751: doi: 10.1088/1742-6596/751/1/012028.

Wavhal, D.S. & Fisher, E.R. 2005. Modification of polysulfone ultrafiltration membranes by CO2 plasma treatment. Desalination 172: 189-205.

Yang, L., Chen, J., Guo, Y. & Zhang, Z. 2009. Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Applied Surface Science 255: 4446-4451.

Yuenyao, C., Chittrakarn, T., Tirawanichakul, Y., Saeung, P. & Taweepreda, W. 2012. The effects of argon and oxygen plasmas on the surface morphology of polysulfone membrane. Thai Journal of Physics Series 8: 41-44.

 

*Corresponding author; email: chalady_2012@hotmail.com

 

 

previous