Sains Malaysiana 46(5)(2017): 783–793
http://dx.doi.org/10.17576/jsm-2017-4605-13
Low
Pressure DC-Plasma System for the Modification of Polymeric Membrane Surfaces
(Sistem DC-Plasma Tekanan Rendah untuk Pengubahsuaian
Permukaan Membran Polimer)
CHALAD YUENYAO1,2,3*, THAWAT CHITTRAKARN1,2, YUTTHANA TIRAWANICHAKUL1,2 & HIDEKI NAKAJIMA4
1Department of
Physics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla
90112
Thailand
2Membrane
Science and Technology Research Center, Department of Physics, Faculty of
Science
Prince
of Songkla University, Hatyai, Songkhla 90112, Thailand
3ThEP
Center, CHE, 328 Si Ayutthaya Rd., Bangkok 10400, Thailand
4Synchrotron
Light Research Institute (Public Organization), 111 University Avenue, Muang
District, Nakhon Ratchasima 30000, Thailand
Received:
27 June 2016/Accepted: 24 October 2016
ABSTRACT
The main objectives of this work were to develop a lab-scale
direct current (DC) glow discharges plasma system for
modification of organic and inorganic membranes. Characteristics of plasma
system were presented under the discharge of five gases (Ar, N2,
air, O2, and CO2).
A Langmuir double probe was used for the evaluation of the electron temperature
(Te) and electron density (ne) of
plasmas. The current and voltage (I-V) characteristic curves were analyzed.
Relationships between breakdown voltage (VB) of
gases and products of gas pressure and inter-electrode gap (pd) were studied in
form of Paschen curves. The results showed that Te of
plasma in various gases was in the range of 4-13 eV, while the ne varied
between 108 and 109 cm-3.
The plasma generated at different gas pressure and applied voltage is in the
normal and abnormal modes. Finally, the constructed DC-plasma
system was utilized for modification of polymeric membrane surfaces. Treatment
time, discharge power and type of gas were varied. The tailoring of membrane
surfaces was analyzed through the water contact angle and percent-weight loss (PWL)
measurements, DMTA, AFM, XPS and FTIR spectrum. It could be shown that DC-plasma
from this system can be used to modify the surface of polymeric membranes.
Keywords: Breakdown voltage; characterization; DC discharge
plasma; Langmuir double probe; polymeric membrane
ABSTRAK
Objektif utama kajian ini adalah untuk membangunkan satu skala makmal
arus terus (DC) cahaya buangan sistem plasma untuk
pengubahsuaian membran organik dan bukan organik. Pencirian
sistem plasma telah ditunjukkan dengan penyingkiran lima gas
(Ar, N2,
udara, O2 dan CO2).
Prob berganda Langmuir digunakan untuk menilai suhu elektron
(Te)
dan ketumpatan elektron (ne) plasma. Pencirian arus
dan voltan (I-V) lengkung dianalisis. Hubungan antara gas
pembelah voltan (VB)
dan produk tekanan gas serta jurang antara elektrod (pd) telah
dikaji dalam bentuk lengkung Paschen. Keputusan menunjukkan
bahawa Te plasma
dalam pelbagai gas adalah dalam lingkungan 4-13 eV, manakala
ne berjulat
antara 108 dan 109 cm-3.
Plasma yang dihasilkan pada tekanan gas yang berbeza dan voltan
gunaan adalah dalam mod normal dan tidak normal. Kesimpulannya,
sistem DC-plasma
yang dibina digunakan untuk pengubahsuaian permukaan membran
polimer. Masa rawatan, kuasa pelepasan dan jenis gas telah
berubah. Pengukuran permukaan membran dianalisis melalui sudut
sentuh air dan pengukuran kehilangan peratus berat (PWL),
spektrum DMTA, AFM, XPS dan
FTIR.
Ia dapat ditunjukkan bahawa DC-plasma daripada sistem ini
boleh digunakan untuk mengubah suai permukaan membran polimer.
Kata kunci: Membran polimer; pecahan voltan; pencirian; penyingkiran DC plasma;
prob berganda Langmuir
REFERENCES
Al-Itry, R., Lamnawar, K. & Maazouz, A. 2012.
Improvement of thermal stability, rheological and mechanical properties of PLA,
PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer
Degradation and Stability 97(10): 1898-1914.
Bennett, J.R.J., Edgecock, T.R., Gray, S.A. & McFarland,
A.J. 2010. Tungsten material properties at high temperature and high stress. Journal
of Nuclear Materials. https://arxiv.org/ abs/1010.2905.
Bogaerts, A. 1996. Mathematical modeling of a direct current
glow discharge in argon. PhD Thesis, Universiteit Antwerpen (Unpublished).
Bryjak, M., Gancarz, I. & Pozniak, G. 2000.
Plasma-modified porous membranes: Review. Chemical Papers 54(6b): 496- 501.
Castro, R.M., Cirino, G.A., Verdonck, P., Maciel, H.S.,
Massi, M., Pisani, M.B. & Mansano, R.D. 1999. A comparative study of single
and double Langmuir probe techniques for RF plasma characterization. Contributions
to Plasma Physics 39(3): 235-246.
Chen, S.H., Liou, R.M., Lin, Y.Y., Lai, C.L. & Lai, J.Y.
2009. Preparation and characterizations of asymmetric sulfonated polysulfone
membranes by wet phase inversion method. European Polymer Journal 45(4):
1293-1301.
Chiad, B.T., Al-zubaydi, T.L., Khalaf, M.K. & Khudiar,
A.I. 2009. Construction and characterization of a low pressure plasma reactor
using dc glow discharge. Journal of Optoelectronics and Biomedical Materials 1(3): 255-262.
Choi, S.H., Lee, M.K., Oh, S.J. & Koo, J.K. 2003. Gas
sorption and transport of ozone-treated polysulfone. Journal of Membrane
Science 221(1-2): 37-46.
Chu, P.K., Chen, J.Y., Wang, L.P. & Huang, N. 2002.
Plasma-surface modification of biomaterials. Materials Science and
Engineering R: Reports 36(5-6): 143-206.
D’Agostino, R. 1990. Plasma Deposition, Treatment, and
Etching of Polymers. New York: Academic Press.
Elghazaly, M.H. & Solyman, S. 2007. Electron impact
ionization and excitation rate coefficients in the negative glow region of a
glow discharge. Journal of Quantitative Spectroscopy and Radiative Transfer 103(2):
260-271.
Franz, G. 2009. Low Pressure Plasmas and Microstructuring
Technology. London: Springer Dordrecht Heidelberg. pp. 307-359.
Gancarz, I., Pozniak, G. & Bryjak, M. 2000. Modification
of polysulfone membranes: 3. Effect of nitrogen plasma. European Polymer
Journal 36: 1563-1569.
Hwang, J.W., Cho, K., Yoon, T.H. & Park, C.E. 2000.
Effects of molecular weight of polysulfone on phase separation behavior for
cyanate ester/polysulfone blends. Journal of Applied Polymer Science 77:
921-927.
Johnson, E.O. & Malter, L. 1950. A floating double probe
method for measurements in gas discharges. Physical Review 80(1): 58-68.
Khulbe, K.C., Feng, C. & Matsuura, T. 2010. The art of
surface modification of synthetic polymeric membranes. Journal of Applied
Polymer Science 115: 855-895.
Kushwaha, O.S., Avadhani, C.V. & Singh, R.P. 2014.
Effects of UV rays on degradation and stability of high performance polymer
membranes. Advanced Materials Letters 5(5): 272-279.
Lieberman, M.A. & Lichtenberg, A.J. 2005. Principles
of Plasma Discharges and Materials Processing. 2nd ed. New Jersey: John
Wiley & Sons, Inc. pp. 450-470.
Lisovskiy, V.A., Yakovin, S.D. & Yegorenkov, V.D. 2000.
Low-pressure gas breakdown in uniform dc electric field. Journal of Physics
D: Applied Physics 33: 2722-2730.
Lee, W.J., Kim, D.S. & Kim, J.H. 2000. Preparation and
gas separation properties of asymmetric polysulfone membranes by a dual bath
method. Korean Journal of Chemical Engineering 17(2): 143-148.
Matsuyama, H., Teramoto, M. & Hirai, K. 1995. Effect of
plasma treatment on CO2 permeability
and selectivity of poly(dimethylsiloxane) membrane. Journal of Membrane
Science 99(2): 139-147.
Modarresi, S., Soltanieh, M., Mousavi, S.A. & Shabani,
I. 2012. Effect of low-frequency oxygen plasma on polysulfone membranes for CO2/CH4 separation. Journal of Applied Polymer Science 124: E199-E204.
Naz, M.Y., Ghaffar, A., Rehman, N.U., Naseer, S. &
Zakaullah, M. 2011. Double and triple Langmuir probes measurements in
inductively coupled nitrogen plasma. Progress in Electromagnetics Research 114:
113-128.
Naz, M.Y. & Ghaffar, A. 2011. Symmetric and asymmetric
double Langmuir probes characterization of radio frequency inductively coupled
nitrogen plasma. Progress in Electromagnetics Research 115: 207-221.
Nisha, M., Saji, K.J., Ajimsha, R.S., Joshy, N.V. &
Jayaraj, M.K. 2006. Characterization of radio frequency plasma using Langmuir
probe and optical emission spectroscopy. Journal of Applied Physics 99(3):
033304.
Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. & Gao,
C. 2009. Modification of surface properties of polypropylene (PP) film using DC
glow discharge air plasma. Applied Surface Science 255: 3965-3971.
Pandiyaraj, K.N., Selvarajan, V., Deshmukh, R.R. &
Bousmina, M. 2008. The effect of glow discharge plasma on the surface
properties of poly(ethylene terephthalate) (PET) film. Surface and Coatings
Technology 202(17): 4218-4226.
Pesek, S.C. & Koros, W.J. 1993. Aqueous quenched
asymmetric polysulfone membranes prepared by dry/wet phase separation. Journal
of Membrane Science 81: 71-88.
Raizer, Y.P. 1991. Gas Discharge Physics. Germany:
Springer- Verlag Berlin Heidelberg.
Roth, J.R. 2000. Industrial Plasma Engineering.
Volume 1 Principle. Philadelphia: IOP Publishing Ltd.
Sanaee, Z., Mohajerzadeh, S., Zand, K., Gard, F.S. &
Pajouhi, H. 2011. Minimizing permeability of PET substrates using oxygen plasma
treatment. Applied Surface Science 257: 2218-2225.
Silberberg, M.S. 2006. Chemistry: The Molecular Nature of
Matter and Change. 4th ed. New York: McGraw-Hill Companies, Inc. pp.
312-356.
Singh, S.B., Chand, N. & Patil, D.S. 2009. Langmuir
probe diagnostics of microwave electron cyclotron resonance (ECR) plasma. Vacuum 83: 372-377.
Svorcik,
V., Kotal, V., Slepicka, P., Blahova, O., Spirkova, M., Sajdl, P. &
Hnatowicz, V. 2006. Modification of surface properties of polyethylene by Ar
plasma discharge. Nuclear Instruments and Methods in Physics Research
Section B 244: 365-372.
Vidaurre,
E.F.C., Achete, C.A., Simao, R.A. & Habert, A.C. 2001. Surface modification
of porous polymeric membranes by RF-plasma treatment. Nuclear Instruments
and Methods in Physics Research Section B 175-177: 732-736.
Vijayalakshmi,
K.A., Mekala, M., Yogan, C.P. & Pandiyaraj, K.N. 2012. Studies on adhesive
properties of polypropylene (PP) and polycarbonate (PC) film surfaces using DC
glow discharge plasma. International Journal of Physical Science 7(15):
2264-2273.
Volkov,
V.V., Ibragimov, R.G., Abdullin, I.Sh., Gallyamov, R.T., Ovcharova, A.A. &
Bildyukevich, A.V. 2016. Modification of polysulfone porous hollow fiber
membranes by air plasma treatment. Journal of Physics: Conference Series 751:
doi: 10.1088/1742-6596/751/1/012028.
Wavhal,
D.S. & Fisher, E.R. 2005. Modification of polysulfone ultrafiltration
membranes by CO2 plasma treatment. Desalination 172: 189-205.
Yang,
L., Chen, J., Guo, Y. & Zhang, Z. 2009. Surface modification of a
biomedical polyethylene terephthalate (PET) by air plasma. Applied Surface
Science 255: 4446-4451.
Yuenyao,
C., Chittrakarn, T., Tirawanichakul, Y., Saeung, P. & Taweepreda, W. 2012.
The effects of argon and oxygen plasmas on the surface morphology of
polysulfone membrane. Thai Journal of Physics Series 8: 41-44.
*Corresponding
author; email: chalady_2012@hotmail.com