Sains Malaysiana 46(6)(2017): 967–973

http://dx.doi.org/10.17576/jsm-2017-4606-16

 

Structural, Magnetic and Electrical Properties of Barium Titanate and Magnesium Ferrite Composites

(Struktur, Sifat Magnet dan Elektrik Komposit Barium Titanat dan Ferit Magnesium)

 

MOHAMAD FAHMI AMIN BIN ZOLKEPLI & ZALITA ZAINUDDIN*

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 11 April 2016/Accepted: 25 November 2016

 

 

ABSTRACT

Structural, magnetic and electrical characteristics of multiferroics (1-x)BaTiO3-xMgFe2O4 composites with weight fractions of x = 0.3, 0.5 and 0.7 are reported. MgFe2O4 powders were prepared using sol-gel auto combustion technique. It was combined with commercial BaTiO3 to form composites by using wet milling solid state reaction technique. Formation of tetragonal perovskite for the ferroelectric BaTiO3 and cubic spinel for the ferrimagnetic MgFe2O4 phases, were identified from the XRD pattern. The average grain size for each composite was about 0.5 μm. The M-H loop showed soft ferrimagnetic properties due to the presence of MgFe2O4 in the composites. The increment of the MgFe2O4 weight fraction increased the saturation magnetization and slightly changed the coercive field. The complex impedance plot can be represented by a parallel R and C circuit. Composite sample with x = 0.5 has the highest resistance with lowest capacitance and dielectric constant value at room temperature. The dielectric constant showed a very strong dispersion at low frequencies, due to the Maxwell-Wagner mechanism and a slight dispersion at higher frequencies. Based on the results obtained, all of the composite samples exhibited high dielectric constant and tangent loss at the low frequency range.

 

Keyword: Ceramic; dielectric; ferrimagnet; ferroelectric

 

ABSTRAK

Struktur, sifat magnet dan elektrik komposit multiferoik (1-x)BaTiO3-xMgFe2O4 dengan pecahan berat, x = 0.3, 0.5 dan 0.7 dilaporkan. Serbuk MgFe2O4 telah disediakan menggunakan teknik sol-gel pembakaran auto. Ia digabungkan bersama BaTiO3 komersil untuk membentuk komposit dengan menggunakan teknik tindak balas keadaan pepejal pengisaran basah. Pembentukan fasa perovskit tetragon bagi feroelektrik BaTiO3 dan fasa kubus spinel bagi ferimagnet MgFe2O4, dikenal pasti daripada corak XRD. Purata saiz butiran setiap komposit ialah 0.5 μm. Lengkung M-H menunjukkan sifat-sifat ferimagnet lembut disebabkan oleh kehadiran MgFe2O4 di dalam komposit. Kenaikan pecahan berat MgFe2O4 meningkatkan pemagnetan tepu dan mengubah sedikit medan paksa. Plot impedans kompleks boleh diwakili oleh litar selari R dan C. Sampel komposit x = 0.5 mempunyai rintangan tertinggi serta nilai kapasitans dan pemalar dielektrik terendah pada suhu bilik. Pemalar dielektrik menunjukkan penyerakan yang tinggi pada frekuensi rendah disebabkan mekanisme Maxwell-Wagner dan sedikit penyerakan pada frekuensi lebih tinggi. Berdasarkan hasil yang diperoleh, kesemua sampel komposit memaparkan pemalar dielektrik dan kehilangan tangen yang tinggi pada julat frekuensi rendah.

 

Kata kunci: Dielektrik; ferimagnet; feroelektrik; seramik

 

REFERENCES

 

Callister, W.D. 2007. Materials Science And Engineering: An Introduction. New York: John Wiley & Sons.

Fina, I., Dix, N., Fàbrega, L., Sánchez, F. & Fontcuberta, J. 2010. Magnetocapacitance in BaTiO3-CoFe2O4 nanocomposites. Thin Solid Films 518(16): 4634-4636.

Hrib, L.M. & Caltun, O.F. 2011. Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite-barium titanate composites. Journal of Alloys and Compounds 509(23): 6644-6648.

Jonscher, A.K. 1983. Dielectric Relaxation in Solids. London: Chelsea Dielectrics Press Limited.

Kanamadi, C.M., Kim, J.S., Yang, H.K., Moon, B.K., Choi, B.C. & Jeong, J.H. 2009. Magnetoelectric effect and complex impedance analysis of (x)CoFe2O4+(1-x)Ba0.8Sr0.2TiO3 multiferroics. Journal of Alloys and Compounds 481: 781- 785.

Köferstein, R., Walther, T., Hesse, D. & Ebbinghaus, S.G. 2015. Fine-grained BaTiO3-MgFe2O4 composites prepared by a Pechini-like process. Journal of Alloys and Compounds 638: 141-147.

Leonel, L.V., Righi, A., Mussel, W.N., Silva, J.B. & Mohallem, N.D.S. 2011. Structural characterization of barium titanate-cobalt ferrite composite powders. Ceramics International 37(4): 1259-1264.

Yu Lih-Jiun, Sahrim Hj Ahmad, Ing Kong, Sivanesan Appadu & Flaifel, M.H. 2012. Sifat magnet, mikrostruktur dan morfologi komposit getah asli termoplastik berpengisi Ferit NiZn/MwNT. Sains Malaysiana41(4): 453-458.

Liu, Y., Wu, Y., Li, D., Zhang, Y., Zhang, J. & Yang, J. 2013. A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4-BaTiO3 multiferroic composites. Journal of Materials Science: Materials in Electronics 24(6): 1900-1904.

Mitoseriu, L. & Buscaglia, V. 2006. Intrinsic/extrinsic interplay contributions to the functional properties of ferroelectric-magnetic composites. Phase Transitions 79(12): 1095-1121.

Mo, H.L., Jiang, D.M., Wang, C.M., Zhang, W.G. & Jiang, J.S. 2013. Magnetic, dielectric and magnetoelectric properties of CoFe2O4–Bi0.85La0.15FeO3 multiferroic composites. Journal of Alloys and Compounds 579: 187-191.

Pahuja, P., Sharma, R., Prakash, C. & Tandon, R.P. 2013. Synthesis and characterization of Ni0.8Co0.2Fe2O4-Ba0.95Sr0.05TiO3 multiferroic composites. Ceramic International 39: 9435- 9445.

Ravindar Tadi, Yong-Il Kim, Debasish Sarkar, Cheolgi Kim & Ryu, K.S. 2010. Magnetic and electrical properties of bulk BaTiO3 + MgFe2O4 composite. Magnetism and Magnetic Materials 323: 564-658.

Roy, A., Gupta, R. & Garg, A. 2012. Review article: Multiferroic memories. Advances in Condensed Matter Physics 2012: 12.

Siong, K.K., Amari, N.F., Yuan, T.C., Radiman, S., Yahaya, R. & Yasir, M.S. 2013. Preparation, characterization and properties of core-shell cobalt ferrite/polycaprolactone nanomagnetic biomaterials. Sains Malaysiana42(2): 167-173.

Spaldin, N., Cheong, S. & Ramesh, R. 2010. Multiferroics: Past, present and future. Physics Today 63(10): 38-43.

Sutka, A. & Mezinskis, G. 2012. Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Frontiers of Materials Science 6(2): 128-141.

Tadi, R., Kim, Y.I., Ryu, K.S. & Kim, C. 2012. Effect of magnetic field on the dielectric properties of multiferroic composites. Journal of the Korean Physical Society 61(9): 1545-1549.

Yadav, R.S., Havlica, J., Masilko, J., Kalina, L., Wasserbauer, J., Hajdúchová, M., Enev, V., Kuritka, I. & Kožáková, Z. 2016. Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. Journal of Magnetism and Magnetic Materials 399: 109-117.

Zhang, R.F., Deng, C.Y., Ren, L., Li, Z. & Zhou, J.P. 2013. Dielectric, ferromagnetic and maganetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics. Materials Research Bulletin 48(10): 4100-4104.

Zolkepli, M.F.A. & Zainuddin, Z. 2015. Structure, magnetic and complex impedance analysis of (1-x)BaTiO3- xMgFe2O4 composite. AIP Conference Proceedings 1678: 040014.

 

 

*Corresponding author; email: zazai@ukm.edu.my

 

 

previous