Sains Malaysiana 46(7)(2017): 1011–1016

http://dx.doi.org/10.17576/jsm-2017-4607-01

 

Synthesis of Large-Area Few-Layer Graphene by Open-Flame Deposition

(Sintesis Grafin Kawasan Lebar Pelbagai Lapisan melalui Pemendapan Nyalaan

Api Terbuka)

 

EDHUAN ISMAIL1, MOHD SHUKRI SIRAT1, ABD. MALEK ABDUL HAMID1, RAIHAN OTHMAN1, MOHD ASYADI AZAM MOHD ABID2 & MOHD HANAFI ANI1*

 

1Department of Manufacturing and Materials Engineering, International Islamic University Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia

 

2Engineering Materials Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia

 

Received: 14 October 2016/Accepted: 13 January 2017

 

ABSTRACT

Various production methods have been developed for graphene production, but each of them falls short in either the economic or quality aspect. In this paper, we present the flame deposition method, a modified chemical vapor deposition (CVD) that uses an open-flame. In this method, resulting carbon deposits were found to be graphitic in nature, thereby suggesting multilayer graphene growth in a very short reaction time of 5 min. Furthermore, the deposits were transferred onto a cyanoacrylate plastic substrate and its sheet resistance was measured to be 81 ohm/square. The results showed that open-flame deposition exhibits high potential for low-cost, low-energy and high-quality production of graphene.

 

Keywords: Chemical vapor deposition (CVD); graphene; open-flame deposition; plasma; sheet resistance

 

ABSTRAK

Pelbagai kaedah telah digunakan untuk menghasilkan grafin namun setiap kaedah mempunyai kelemahan sama ada daripada aspek ekonomi atau kualiti. Di sini kami melaporkan kaedah pemendapan wap kimia yang diubah suai dengan kaedah nyalaan api terbuka. Enapan karbon yang terhasil dikenal pasti bersifat grafitik seterusnya mencadangkan pertumbuhan grafin berlapis dalam masa tindak balas yang singkat iaitu 5 min. Kemudian, enapan karbon itu dipindahkan ke atas substrat plastik sianoakrilat dan lapisan rintangan diukur dan nilai rintangannya ialah 81 ohm/persegi. Keputusan menunjukkan bahawa pemendapan api terbuka berpotensi untuk mengeluarkan grafin berkualiti tinggi dengan kos dan penggunaan tenaga yang rendah.

 

Kata kunci: Grafin; pemendapan nyalaan api terbuka; pemendapan wap kimia (CVD); plasma; rintangan lapisan

REFERENCES

Avouris, P. & Freitag, M. 2014. Graphene photonics, plasmonics, and optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics 20(1): 72-83. Nature Publishing Group.

Bae, S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Jayakumar Balakrishnan, Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Özyilmaz, B., Ahn, J.H., Hong, B.H. & Iijima, S. 2010. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5(8): 574-578.

Cançado, L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S. & Ferrari, A.C. 2011. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Letters 11(8): 3190-3196.

Chan, S-H., Chen, S-H., Lin, W-T., Li, M-C., Lin, Y-C. & Kuo, C-C. 2013. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition. Nanoscale Research Letters 8(1): 285.

Chen, C-C., Kuo, C-J., Liao, C-D., Chang, C-F., Tseng, C-A., Liu, C-R. & Chen, Y-T. 2015. Growth of large-area graphene single crystals in confined reaction space with diffusion-driven chemical vapor deposition. Chemistry of Materials 27(18): 6249-6258.

Costa, S.D., Righi, A., Fantini, C., Hao, Y., Magnuson, C., Colombo, L., Ruoff, R.S. & Pimenta, M.A. 2012. Resonant Raman spectroscopy of graphene grown on copper substrates. Solid State Communications 152(15): 1317-1320.

Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B. & Seyller, T. 2009. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials 8(3): 203-207.

Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6(3): 183-191.

Jacob, M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Sakthi Kumar, D., Taguchi, D., Iwamoto, M., Neupane, R. & Varghese, O.K. 2015. Catalyst free plasma enhanced growth of graphene from sustainable sources. Nano Letters 15(9): 5702-5708.

Kalbacova, M., Broz, A., Kong, J. & Kalbac, M. 2010. Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15): 4323-4329.

Lambert, T.N., Luhrs, C.C., Chavez, C.A., Wakeland, S., Brumbach, M.T. & Alam, T.M. 2010. Graphite oxide as a precursor for the synthesis of disordered graphenes using the aerosol-through-plasma method. Carbon 48(14): 4081-4089.

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. & Ruoff, R.S. 2009. Large area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932): 1312-1314.

Li, Z., Zhu, H., Xie, D., Wang, K., Cao, A., Wei, J., Li, X., Fan, L. & Wu, D. 2011. Flame synthesis of few-layered graphene/ graphite films. Chemical Communications 47(12): 3520.

Liu, H., Zhu, S. & Jiang, W. 2016. Rapid flame synthesis of multilayer graphene on SiO2/Si substrate. Journal of Materials Science: Materials in Electronics 27(3): 2795- 2799.

Martins, L.G.P., Song, Y., Zeng, T., Dresselhaus, M.S., Kong, J. & Araujo, P.T. 2013. Direct transfer of graphene onto flexible substrates. Proceedings of the National Academy of Sciences 110(44): 17762-17767.

Memon, N.K., Tse, S.D., Al-Sharab, J.F., Yamaguchi, H., Goncalves, A.M.B., Kear, B.H., Jaluria, Y., Andrei, E.Y. & Chhowal, M. 2011. Flame synthesis of graphene films in open environments. Carbon 49(15): 5064-5070.

Murakami, K., Tanaka, S., Hirukawa, A., Hiyama, T., Kuwajima, T., Kano, E., Takeguchi, M. & Fujita, J-I. 2015. Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition. Applied Physics Letters 106: 093112.

Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. & Kim, K. 2012. A roadmap for graphene. Nature 490(7419): 192-200.

Peigney, A., Laurent, Ch., Flahaut, E., Bacsa, R.R. & Rousset, A. 2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4): 507-514.

Polat, E.O., Balci, O., Kakenov, N., Uzlu, H.B., Kocabas, C. & Ravinder Dahiya. 2015. Synthesis of large area graphene for high performance in flexible optoelectronic devices. Scientific Reports. www.nature.com/scientificreports. pp. 1-10.

Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., Smirnov, S., Vlassiouk, G.E.I., Regmi, M., Fulvio, P., Dai, S. & Datskos, P. 2011. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5(7): 6069-6076.

Wang, W., Peng, Q., Dai, Y., Qian, Z. & Liu, S. 2016. Temperature dependence of Raman spectra of graphene on copper foil substrate. Journal of Materials Science: Materials in Electronics 27(4): 3888-3893.

Wood, J.D., Schmucker, S.W., Lyons, A.S., Pop, E. & Lyding, J.W. 2011. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Letters 11(11): 4547-4554.

Zhang, X., Wang, L., Xin, J., Yakobson, B.I. & Ding, F. 2014. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. Journal of the American Chemical Society 136(8): 3040-3047.

Zhao, P., Kim, S., Chen, X., Einarsson, E., Wang, M., Song, Y., Wang, H., Chiashi, S., Xiang, R. & Maruyama, S. 2014. Equilibrium chemical vapor deposition growth of bernal-stacked bilayer graphene. ACS Nano 8(11): 11631-11638.

 

 

*Corresponding author; email: mhanafi@iium.edu.my