Sains Malaysiana 46(7)(2017): 1011–1016
http://dx.doi.org/10.17576/jsm-2017-4607-01
Synthesis of
Large-Area Few-Layer Graphene by Open-Flame Deposition
(Sintesis Grafin
Kawasan Lebar Pelbagai Lapisan melalui Pemendapan Nyalaan
Api Terbuka)
EDHUAN ISMAIL1, MOHD SHUKRI SIRAT1, ABD. MALEK ABDUL HAMID1, RAIHAN OTHMAN1, MOHD ASYADI AZAM MOHD ABID2 & MOHD HANAFI ANI1*
1Department of
Manufacturing and Materials Engineering, International Islamic University
Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Malaysia
2Engineering Materials
Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia
Melaka (UTeM), Durian Tunggal, 76100 Melaka, Malaysia
Received: 14 October
2016/Accepted: 13 January 2017
ABSTRACT
Various production methods
have been developed for graphene production, but each of them falls short in
either the economic or quality aspect. In this paper, we present the flame
deposition method, a modified chemical vapor deposition (CVD)
that uses an open-flame. In this method, resulting carbon deposits were found
to be graphitic in nature, thereby suggesting multilayer graphene growth in a
very short reaction time of 5 min. Furthermore, the deposits were transferred
onto a cyanoacrylate plastic substrate and its sheet resistance was measured to
be 81 ohm/square. The results showed that open-flame deposition exhibits high
potential for low-cost, low-energy and high-quality production of graphene.
Keywords: Chemical
vapor deposition (CVD); graphene; open-flame deposition;
plasma; sheet resistance
ABSTRAK
Pelbagai kaedah telah
digunakan untuk menghasilkan grafin namun setiap kaedah mempunyai kelemahan
sama ada daripada aspek ekonomi atau kualiti. Di sini kami melaporkan kaedah
pemendapan wap kimia yang diubah suai dengan kaedah nyalaan api terbuka. Enapan
karbon yang terhasil dikenal pasti bersifat grafitik seterusnya mencadangkan
pertumbuhan grafin berlapis dalam masa tindak balas yang singkat iaitu 5 min.
Kemudian, enapan karbon itu dipindahkan ke atas substrat plastik sianoakrilat
dan lapisan rintangan diukur dan nilai rintangannya ialah 81 ohm/persegi.
Keputusan menunjukkan bahawa pemendapan api terbuka berpotensi untuk
mengeluarkan grafin berkualiti tinggi dengan kos dan penggunaan tenaga yang
rendah.
Kata kunci: Grafin;
pemendapan nyalaan api terbuka; pemendapan wap kimia (CVD);
plasma; rintangan lapisan
REFERENCES
Avouris,
P. & Freitag, M. 2014. Graphene photonics, plasmonics, and optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics 20(1): 72-83. Nature
Publishing Group.
Bae,
S., Kim, H., Lee, Y., Xu, X., Park, J-S., Zheng, Y., Jayakumar Balakrishnan,
Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Özyilmaz, B., Ahn, J.H.,
Hong, B.H. & Iijima, S. 2010. Roll-to-roll production of 30-inch graphene
films for transparent electrodes. Nature Nanotechnology 5(8): 574-578.
Cançado,
L.G., Jorio, A., Martins Ferreira, E.H., Stavale, F., Achete, C.A., Capaz,
R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S. & Ferrari, A.C. 2011.
Quantifying defects in graphene via Raman spectroscopy at different excitation
energies. Nano Letters 11(8): 3190-3196.
Chan,
S-H., Chen, S-H., Lin, W-T., Li, M-C., Lin, Y-C. & Kuo, C-C. 2013.
Low-temperature synthesis of graphene on Cu using plasma-assisted thermal
chemical vapor deposition. Nanoscale Research Letters 8(1): 285.
Chen,
C-C., Kuo, C-J., Liao, C-D., Chang, C-F., Tseng, C-A., Liu, C-R. & Chen,
Y-T. 2015. Growth of large-area graphene single crystals in confined reaction
space with diffusion-driven chemical vapor deposition. Chemistry of
Materials 27(18): 6249-6258.
Costa,
S.D., Righi, A., Fantini, C., Hao, Y., Magnuson, C., Colombo, L., Ruoff, R.S.
& Pimenta, M.A. 2012. Resonant Raman spectroscopy of graphene grown on
copper substrates. Solid State Communications 152(15): 1317-1320.
Emtsev,
K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney,
J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K.,
Waldmann, D., Weber, H.B. & Seyller, T. 2009. Towards wafer-size graphene
layers by atmospheric pressure graphitization of silicon carbide. Nature
Materials 8(3): 203-207.
Geim,
A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6(3):
183-191.
Jacob,
M.V., Rawat, R.S., Ouyang, B., Bazaka, K., Sakthi Kumar, D., Taguchi, D.,
Iwamoto, M., Neupane, R. & Varghese, O.K. 2015. Catalyst free plasma
enhanced growth of graphene from sustainable sources. Nano Letters 15(9):
5702-5708.
Kalbacova,
M., Broz, A., Kong, J. & Kalbac, M. 2010. Graphene substrates promote
adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48(15):
4323-4329.
Lambert,
T.N., Luhrs, C.C., Chavez, C.A., Wakeland, S., Brumbach, M.T. & Alam, T.M.
2010. Graphite oxide as a precursor for the synthesis of disordered graphenes
using the aerosol-through-plasma method. Carbon 48(14): 4081-4089.
Li,
X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A.,
Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. & Ruoff, R.S. 2009. Large
area synthesis of high quality and uniform graphene films on copper foils. Science 324(5932): 1312-1314.
Li,
Z., Zhu, H., Xie, D., Wang, K., Cao, A., Wei, J., Li, X., Fan, L. & Wu, D.
2011. Flame synthesis of few-layered graphene/ graphite films. Chemical
Communications 47(12): 3520.
Liu,
H., Zhu, S. & Jiang, W. 2016. Rapid flame synthesis of multilayer graphene
on SiO2/Si substrate. Journal of Materials Science:
Materials in Electronics 27(3): 2795- 2799.
Martins,
L.G.P., Song, Y., Zeng, T., Dresselhaus, M.S., Kong, J. & Araujo, P.T.
2013. Direct transfer of graphene onto flexible substrates. Proceedings of
the National Academy of Sciences 110(44): 17762-17767.
Memon,
N.K., Tse, S.D., Al-Sharab, J.F., Yamaguchi, H., Goncalves, A.M.B., Kear, B.H.,
Jaluria, Y., Andrei, E.Y. & Chhowal, M. 2011. Flame synthesis of graphene
films in open environments. Carbon 49(15): 5064-5070.
Murakami,
K., Tanaka, S., Hirukawa, A., Hiyama, T., Kuwajima, T., Kano, E., Takeguchi, M.
& Fujita, J-I. 2015. Direct synthesis of large area graphene on insulating
substrate by gallium vapor-assisted chemical vapor deposition. Applied
Physics Letters 106: 093112.
Novoselov,
K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. & Kim, K.
2012. A roadmap for graphene. Nature 490(7419): 192-200.
Peigney,
A., Laurent, Ch., Flahaut, E., Bacsa, R.R. & Rousset, A. 2001. Specific
surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):
507-514.
Polat,
E.O., Balci, O., Kakenov, N., Uzlu, H.B., Kocabas, C. & Ravinder Dahiya.
2015. Synthesis of large area graphene for high performance in flexible
optoelectronic devices. Scientific Reports.
www.nature.com/scientificreports. pp. 1-10.
Vlassiouk,
I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., Smirnov, S.,
Vlassiouk, G.E.I., Regmi, M., Fulvio, P., Dai, S. & Datskos, P. 2011. Role
of hydrogen in chemical vapor deposition growth of large single-crystal
graphene. ACS Nano 5(7): 6069-6076.
Wang, W., Peng, Q.,
Dai, Y., Qian, Z. & Liu, S. 2016. Temperature dependence of Raman spectra
of graphene on copper foil substrate. Journal of Materials Science:
Materials in Electronics 27(4): 3888-3893.
Wood, J.D., Schmucker,
S.W., Lyons, A.S., Pop, E. & Lyding, J.W. 2011. Effects of polycrystalline
Cu substrate on graphene growth by chemical vapor deposition. Nano Letters 11(11):
4547-4554.
Zhang, X., Wang, L.,
Xin, J., Yakobson, B.I. & Ding, F. 2014. Role of hydrogen in graphene
chemical vapor deposition growth on a copper surface. Journal of the
American Chemical Society 136(8): 3040-3047.
Zhao, P., Kim, S.,
Chen, X., Einarsson, E., Wang, M., Song, Y., Wang, H., Chiashi, S., Xiang, R.
& Maruyama, S. 2014. Equilibrium chemical vapor deposition growth of
bernal-stacked bilayer graphene. ACS Nano 8(11): 11631-11638.
*Corresponding
author; email: mhanafi@iium.edu.my
|