Sains Malaysiana 46(7)(2017): 1017–1024

http://dx.doi.org/10.17576/jsm-2017-4607-02

 

Thermal Stability and Conductivity of Carbon Nanotube Nanofluid using Xanthan Gum as Surfactant

(Kestabilan Termal dan Kekonduksian Bendalir Nano Karbon Tiub Nano menggunakan Gam Xantan sebagai Surfaktan)

 

SABA RASHID1I*, RASHMI, W2., LUQMAN CHUAH ABDULLAH3, KHALID, M4., FAKHRUL-RAZI AHMADUN5 & M.Y. FAIZAH6

 

1Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical Engineering, Taylor’s University, 47500 Subang Jaya, Selangor

Darul Ehsan, Malaysia

 

3Materials Processing & Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Research Centre for Nano-Materials and Energy Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia

 

5Humanitarian Assistance and Disaster Relief Research Centre, National Defense University, Sungai Besi Camp, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

6Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor

Darul Ehsan, Malaysia

 

Received: 17 October 2016/Accepted: 17 February 2017

 

 

ABSTRACT

A nanofluid is a suspension of nano-sized particles dispersed in a base fluid. It is very much obligatory to know more about stability and thermal characteristics of such a nanofluid for their further use in practical applications. In this research, multiwalled carbon nanotubes (CNT) is dispersed in water. CNT dispersed in water is highly unstable and it sediments rapidly due to the Vander Waals force of attraction. Therefore, to overcome this limitation, xanthan gum (XG) was added which behave as a promising dispersant followed by 4 h water bath sonication. Experimental work includes stability studies using UV Vis spectroscopy with respect to CNT concentration (0.01 and 0.1 wt. %) and XG concentration (0.04 and 0.2 wt. %). The thermal conductivity of the most stable suspensions was measured using KD 2 Pro as a function of temperature (25-70°C) and CNT concentration. The optimum XG concentration was found for each CNT concentration studied. Thermal conductivity was observed to be strongly dependent on temperature and CNT concentration. The dispersion state of the CNT-water nanofluid is further examined using scanning electron microscope (SEM). In short, CNT nanofluids are found to be more suitable for heat transfer applications in many industries due to their enhanced thermal conductivity property. This work provides useful insight on the behavior of CNT nanofluids.

 

Keywords: Carbon nanotubes; nanofluid; stability; thermal conductivity; xanthan gum

 

ABSTRAK

Bendalir nano ialah penggantungan zarah bersaiz nano dalam bendalir asas. Adalah sangat penting untuk mengetahui lebih lanjut tentang kestabilan dan pencirian termal daripada bendalir nano tersebut bagi tujuan kegunaan praktik selanjutnya. Dalam kajian ini, pelbagai lapisan karbon tiub nano (CNT) terserak di dalam air. Penyerakan CNT ini tidak stabil dan endapan berlaku dengan pantas kerana adanya daya tarikan Vander Waals. Oleh itu, bahan sampingan gam xantan (XG) telah digunakan dalam kajian ini sebagai agen serakan. Penyelidikan bagi mengkaji kesan kepekatan CNT (0.01 dan 0.1 wt. %), kepekatan XG (0.04 dan 0.2 wt. %) dan masa sonikasi (4 jam) ke atas kestabilan bendalir nano telah dijalankan. Bacaan kestabilan diambil dengan menggunakan spektrofotometer UV-Vis. Termal konduktiviti yang paling stabil telah diukur sebagai fungsi suhu (25-70°C) dan kepekatan CNT. Bendalir nano didapati tidak stabil pada sonikasi selama 4 jam dan kepekatan optimum XG didapati antara 0.04,0.2 % bt. dan 0.01,0.1 % bt. bagi julat kepekatan CNT yang dikaji. Pemerhatian menunjukkan bahawa, konduktiviti termal amat bergantung kepada suhu dan kepekatan CNT. Keputusan mendapati CNT bendalir nano adalah lebih sesuai untuk aplikasi pemindahan haba dalam pelbagai industri kerana adanya peningkatan sifat konduktiviti termal. Kajian ini menyediakan maklumat mengenai sifat CNT nano bendalir.

 

Kata kunci: Bendalir nano; karbon tiub nano; kestabilan; konduktiviti termal; gam xantan

REFERENCES

Amrollahi, A., Hamidi, A.A. & Rashidi, A.M. 2007. Preparation of MCM-41 nanofluid and an investigation of Brownian movement of the nanoparticles on the nanofluid conductivity. International Journal of Nanoscience and Nanotechnology 3(1): 13-20.

Choi, C., Yoo, H.S. & Oh, J.M. 2008. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Applied Physics 8(6): 710-712. doi:10.1016/j.cap.2007.04.060.

Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition 66: 99- 105. doi:10.1115/1.1532008.

Ding, Y., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Lee, W.P., Zhang, L. & Huo, R. 2007. Heat transfer intensification using nanofluids. KONA Powder and Particle Journal 25 (March): 23-38. doi:10.14356/kona.2007006.

Fadhillahanafi, N.M., Leong, K.Y. & Risby, M.S. 2013. Stability and thermal conductivity characteristics of carbon nanotubes based nanofluids. International Journal of Automotive and Mechanical Engineering 8: 1376-1384.

Garg, P., Alvarado, J.L., Marsh, C., Calrson, T.A., Kessler, D.A. & Annamalai, K. 2009. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of MWCNT based aqueous nanofluids. International Journal of Heat and Mass Transfer 52(May): 5090-5101.

Ghadimi, A., Saidur, R. & Metselaar, H.S.C. 2011. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer 54(August): 4051-4068. doi:10.1016/j. ijheatmasstransfer.2011.04.014.

Hussein, A.M., Sharma, K.V., Bakar, R.A. & Kadirgama, K. 2013. Heat transfer enhancement with nanofluids - a review. Journal of Chemical Information and Modeling 4(June): 452-461. doi:10.1017/CBO9781107415324.004.

Ismail, A.R., Wan Sulaiman, W.R., Jaafar, M.Z., Ismail, I. & Sabu Hera, E. 2016. Nanoparticles performance as fluid loss additives in water based rilling fluids. Materials Science Forum 864: 189-193. doi:10.4028/www.scientific.net/ MSF.864.189.

Keblinski, P., Phillpot, R., Choi, S. & Eastman, A. 2002. Mechanisms of heat flow in suspensions of nano-sized particles (Nanofluids). International Journal of Heat and Mass Transfer 45: 855-863.

Li, C.H., Williams, W., Buongiorno, J., Hu, L-W. & Peterson, G.P. 2008. Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3-water nanofluids. Journal of Heat Transfer 130(4): 42407. doi:10.1115/1.2789719.

Ling, Z., He, Z., Xu, T., Fang, X., Gao, X. & Zhang, Z. 2017. Experimental and numerical investigation on non-Newtonian nanofluids flowing in shell side of helical baffled heat exchanger combined with elliptic tubes. Applied Sciences 7(1): 48. doi:10.3390/app7010048.

Liu, M-S., Lin, M.C.C., Huang, I-T. & Wang, C-C. 2005. Enhancement of thermal conductivity with carbon nanotube for nanofluids. International Communications in Heat and Mass Transfer 32(9): 1202-1210. doi:10.1016/j. icheatmasstransfer.2005.05.005.

Mahendran, M., Lee, G.C., Sharma, K.V. & Shahrani, A. 2012. Performance evaluation of evacuated tube solar collector using water-based titanium oxide (TiO2) nanofluid. Journal of Mechanical Engineering and Sciences (JMES) 3: 301-310.

Maxwell, J.C. 1954. Summary for policymakers. A Treatise on Electricity and Magnetism 53(9): 1-30. doi:10.1017/ CBO9781107415324.004.

O'Connell, M.J. 2006. Carbon Nanotubes: Properties and Applications. Boca Raton: CRC Press.

Palaniraj, A. & Jayaraman, V. 2011. Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering 106(1): 1-12. doi:10.1016/j. jfoodeng.2011.03.035.

Ponmani, S,, William, J.K.M., Samuel, R., Nagarajan, R. & Sangwai, J.S. 2014. Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloids and Surfaces A: Physicochemical and Engineering Aspects 443: 37-43. doi:10.1016/j. colsurfa.2013.10.048.

Qi, L. 2006. Synthesis of inorganic nanostructures in reverse Micelles. Encyclopedia of Surface and Colloid Science 2: 6183-6207. doi:10.1081/E-ESCS-120023694.

Rashmi, W., Ismail, A.F., Sopyan, I., Jameel, A.T., Yusof, F., Khalid, M. & Mubarak, N.M. 2011. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. Journal of Experimental Nanoscience 6(6): 567-579. doi:10.1080/17458080.2010.487229.

Wang, X.Q. & Mujumdar, A.S. 2007. Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences 46(1): 1-19. doi:10.1016/j.ijthermalsci.2006.06.010.

Wang, X., Xu, X. & Choi, S.U.S. 1999. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer 13(4): 474-480.

Yu, W., France, D.M. Routbort, J.L. & Choi, S.U.S. 2008. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 29(5): 432-460. doi:10.1080/01457630701850851.

Zhang, X., Gu, H. & Fujii, M. 2007. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science 31(6): 593-599. doi:10.1016/j. expthermflusci.2006.06.009.

 

 

*Corresponding author; email: Saba.rashidi604@gmail.com

 

 

previous