Sains Malaysiana 46(7)(2017): 1017–1024
http://dx.doi.org/10.17576/jsm-2017-4607-02
Thermal Stability and
Conductivity of Carbon Nanotube Nanofluid using Xanthan Gum as Surfactant
(Kestabilan Termal dan
Kekonduksian Bendalir Nano Karbon Tiub Nano menggunakan Gam Xantan
sebagai Surfaktan)
SABA RASHID1I*, RASHMI, W2., LUQMAN CHUAH ABDULLAH3, KHALID, M4., FAKHRUL-RAZI AHMADUN5 & M.Y. FAIZAH6
1Institute
of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400
Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Chemical Engineering, Taylor’s University, 47500 Subang Jaya, Selangor
Darul
Ehsan, Malaysia
3Materials
Processing & Technology Laboratory, Institute of Advanced Technology, Universiti
Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
4Research Centre for Nano-Materials and Energy
Technology, Sunway University, No. 5, Jalan
Universiti, Bandar Sunway, 47500 Subang
Jaya, Selangor Darul Ehsan, Malaysia
5Humanitarian Assistance and Disaster Relief
Research Centre, National Defense University, Sungai Besi
Camp, 57000 Kuala Lumpur, Federal Territory, Malaysia
6Institute
of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor
Darul
Ehsan, Malaysia
Received:
17 October 2016/Accepted: 17 February 2017
ABSTRACT
A nanofluid is a
suspension of nano-sized particles dispersed in a base fluid. It is very much
obligatory to know more about stability and thermal characteristics of such a
nanofluid for their further use in practical applications. In this research,
multiwalled carbon nanotubes (CNT) is dispersed in water. CNT dispersed
in water is highly unstable and it sediments rapidly due to the Vander Waals
force of attraction. Therefore, to overcome this limitation, xanthan gum (XG)
was added which behave as a promising dispersant followed by 4 h water bath
sonication. Experimental work includes stability studies using UV Vis
spectroscopy with respect to CNT concentration (0.01 and 0.1
wt. %) and XG concentration (0.04 and 0.2 wt. %). The thermal
conductivity of the most stable suspensions was measured using KD 2
Pro as a function of temperature (25-70°C) and CNT concentration.
The optimum XG concentration was found for each CNT concentration
studied. Thermal conductivity was observed to be strongly dependent on
temperature and CNT concentration. The dispersion
state of the CNT-water nanofluid is further examined using scanning
electron microscope (SEM). In short, CNT nanofluids
are found to be more suitable for heat transfer applications in many industries
due to their enhanced thermal conductivity property. This work provides useful
insight on the behavior of CNT nanofluids.
Keywords: Carbon
nanotubes; nanofluid; stability; thermal conductivity; xanthan gum
ABSTRAK
Bendalir nano ialah
penggantungan zarah bersaiz nano dalam bendalir asas. Adalah sangat
penting untuk mengetahui lebih lanjut tentang kestabilan dan pencirian
termal daripada bendalir nano tersebut bagi tujuan kegunaan praktik
selanjutnya. Dalam kajian ini, pelbagai lapisan karbon tiub nano
(CNT) terserak di dalam air. Penyerakan
CNT
ini tidak stabil dan endapan berlaku dengan pantas
kerana adanya daya tarikan Vander Waals. Oleh itu, bahan sampingan
gam xantan (XG)
telah digunakan dalam kajian ini sebagai agen serakan. Penyelidikan
bagi mengkaji kesan kepekatan CNT (0.01 dan 0.1 wt. %), kepekatan XG
(0.04 dan 0.2 wt. %) dan masa sonikasi (4 jam) ke
atas kestabilan bendalir nano telah dijalankan. Bacaan kestabilan
diambil dengan menggunakan spektrofotometer UV-Vis.
Termal konduktiviti yang paling stabil telah diukur sebagai fungsi
suhu (25-70°C) dan kepekatan CNT. Bendalir nano didapati tidak stabil
pada sonikasi selama 4 jam dan kepekatan optimum XG didapati
antara 0.04,0.2 % bt. dan 0.01,0.1 % bt. bagi julat kepekatan
CNT yang
dikaji. Pemerhatian menunjukkan bahawa, konduktiviti termal amat
bergantung kepada suhu dan kepekatan CNT. Keputusan mendapati CNT
bendalir nano adalah lebih sesuai untuk aplikasi
pemindahan haba dalam pelbagai industri kerana adanya peningkatan
sifat konduktiviti termal. Kajian ini menyediakan maklumat mengenai
sifat CNT nano bendalir.
Kata kunci: Bendalir
nano; karbon tiub nano; kestabilan; konduktiviti termal; gam xantan
REFERENCES
Amrollahi, A., Hamidi, A.A. & Rashidi, A.M. 2007. Preparation
of MCM-41 nanofluid and an investigation of Brownian movement of the
nanoparticles on the nanofluid conductivity. International Journal of
Nanoscience and Nanotechnology 3(1): 13-20.
Choi, C., Yoo, H.S. & Oh, J.M. 2008. Preparation and heat
transfer properties of nanoparticle-in-transformer oil dispersions as advanced
energy-efficient coolants. Current Applied Physics 8(6): 710-712.
doi:10.1016/j.cap.2007.04.060.
Choi, S.U.S. & Eastman, J.A. 1995. Enhancing thermal
conductivity of fluids with nanoparticles. ASME International Mechanical
Engineering Congress and Exposition 66: 99- 105. doi:10.1115/1.1532008.
Ding, Y., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Lee,
W.P., Zhang, L. & Huo, R. 2007. Heat transfer intensification using
nanofluids. KONA Powder and Particle Journal 25 (March): 23-38.
doi:10.14356/kona.2007006.
Fadhillahanafi, N.M., Leong, K.Y. & Risby, M.S. 2013.
Stability and thermal conductivity characteristics of carbon nanotubes based
nanofluids. International Journal of Automotive and Mechanical Engineering 8:
1376-1384.
Garg, P., Alvarado, J.L., Marsh, C., Calrson, T.A., Kessler, D.A.
& Annamalai, K. 2009. An experimental study on the effect of
ultrasonication on viscosity and heat transfer performance of MWCNT based
aqueous nanofluids. International Journal of Heat and Mass Transfer 52(May):
5090-5101.
Ghadimi, A., Saidur, R. & Metselaar, H.S.C. 2011. A review of
nanofluid stability properties and characterization in stationary conditions. International
Journal of Heat and Mass Transfer 54(August): 4051-4068. doi:10.1016/j.
ijheatmasstransfer.2011.04.014.
Hussein, A.M., Sharma, K.V., Bakar, R.A. & Kadirgama, K. 2013.
Heat transfer enhancement with nanofluids - a review. Journal of Chemical
Information and Modeling 4(June): 452-461.
doi:10.1017/CBO9781107415324.004.
Ismail, A.R., Wan Sulaiman, W.R., Jaafar, M.Z., Ismail, I. &
Sabu Hera, E. 2016. Nanoparticles performance as fluid loss additives in water
based rilling fluids. Materials Science Forum 864: 189-193. doi:10.4028/www.scientific.net/
MSF.864.189.
Keblinski, P., Phillpot, R., Choi, S. & Eastman, A. 2002.
Mechanisms of heat flow in suspensions of nano-sized particles (Nanofluids). International
Journal of Heat and Mass Transfer 45: 855-863.
Li, C.H., Williams, W., Buongiorno, J., Hu, L-W. & Peterson,
G.P. 2008. Transient and steady-state experimental comparison study of
effective thermal conductivity of Al2O3-water nanofluids. Journal of Heat Transfer 130(4): 42407. doi:10.1115/1.2789719.
Ling,
Z., He, Z., Xu, T., Fang, X., Gao, X. & Zhang, Z. 2017. Experimental and
numerical investigation on non-Newtonian nanofluids flowing in shell side of
helical baffled heat exchanger combined with
elliptic tubes. Applied Sciences 7(1): 48. doi:10.3390/app7010048.
Liu, M-S.,
Lin, M.C.C., Huang, I-T. & Wang, C-C. 2005. Enhancement of thermal
conductivity with carbon nanotube for nanofluids. International
Communications in Heat and Mass Transfer 32(9): 1202-1210. doi:10.1016/j.
icheatmasstransfer.2005.05.005.
Mahendran,
M., Lee, G.C., Sharma, K.V. & Shahrani, A. 2012. Performance evaluation of evacuated tube solar collector using water-based
titanium oxide (TiO2) nanofluid. Journal of Mechanical Engineering and Sciences (JMES) 3: 301-310.
Maxwell,
J.C. 1954. Summary for policymakers. A Treatise on Electricity and Magnetism 53(9): 1-30. doi:10.1017/ CBO9781107415324.004.
O'Connell,
M.J. 2006. Carbon Nanotubes: Properties and Applications.
Boca Raton: CRC Press.
Palaniraj,
A. & Jayaraman, V. 2011. Production, recovery and applications of xanthan
gum by Xanthomonas campestris. Journal of Food Engineering 106(1):
1-12. doi:10.1016/j. jfoodeng.2011.03.035.
Ponmani,
S,, William, J.K.M., Samuel, R., Nagarajan, R. & Sangwai, J.S. 2014.
Formation and characterization of thermal and electrical properties of CuO and
ZnO nanofluids in xanthan gum. Colloids and Surfaces A: Physicochemical and
Engineering Aspects 443: 37-43. doi:10.1016/j. colsurfa.2013.10.048.
Qi,
L. 2006. Synthesis of inorganic nanostructures in reverse Micelles. Encyclopedia
of Surface and Colloid Science 2: 6183-6207. doi:10.1081/E-ESCS-120023694.
Rashmi,
W., Ismail, A.F., Sopyan, I., Jameel, A.T., Yusof, F., Khalid, M. &
Mubarak, N.M. 2011. Stability and thermal conductivity enhancement of carbon
nanotube nanofluid using gum arabic. Journal of Experimental Nanoscience 6(6):
567-579. doi:10.1080/17458080.2010.487229.
Wang,
X.Q. & Mujumdar, A.S. 2007. Heat transfer characteristics of nanofluids: A
review. International Journal of Thermal Sciences 46(1): 1-19. doi:10.1016/j.ijthermalsci.2006.06.010.
Wang,
X., Xu, X. & Choi, S.U.S. 1999. Thermal conductivity of nanoparticle-fluid
mixture. Journal of Thermophysics and Heat Transfer 13(4): 474-480.
Yu,
W., France, D.M. Routbort, J.L. & Choi, S.U.S. 2008. Review and comparison
of nanofluid thermal conductivity and heat transfer enhancements. Heat
Transfer Engineering 29(5): 432-460. doi:10.1080/01457630701850851.
Zhang,
X., Gu, H. & Fujii, M. 2007. Effective thermal conductivity and thermal
diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental
Thermal and Fluid Science 31(6): 593-599. doi:10.1016/j.
expthermflusci.2006.06.009.
*Corresponding author; email:
Saba.rashidi604@gmail.com