Sains Malaysiana 46(7)(2017): 1025–1031
http://dx.doi.org/10.17576/jsm-2017-4607-03
The Effect of
Graphene Content on the Structure and Conductivity of Cellulose/Graphene
Composite
(Kesan Kandungan Grafin
terhadap Struktur dan Kekonduksian Komposit Selulosa/Grafin)
FARZANA ABD HAMID1, FAUZANI MD SALLEH1*, NOR SABIRIN MOHAMED2
& SYED BAHARI RAMADZAN SYED ADNAN2
1Chemistry Division, Centre for
Foundation Studies in Science, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
2Physic
Division, Centre for Foundation Studies in Science, University of Malaya
50603
Kuala Lumpur, Federal Territory, Malaysia
Received:
18 October 2016/Accepted: 17 February 2017
ABSTRACT
The effect of graphene
content on the structure and conductivity of an eco-friendly cellulose/
graphene (CG) composite was investigated. Different
compositions of graphene content from 0 to 70 wt. % were prepared
using the sol-gel method. Ionic liquids 1-butyl-3-methyl-imidazolium
chloride was used to disperse graphene between the cellulose.
The investigation showed that CG composite with higher graphene composition exhibits higher
conductivity. The highest conductivity (2.85×10-4
S cm-1) was observed at 60 wt. % graphene composition.
Sample without graphene showed the lowest conductivity of 1.77×10-7
S cm-1, which acts as an insulator. The high conductivity
of CG composite can be associated with the
X-ray diffraction (XRD) patterns. The XRD patterns
of α-cellulose exhibits a decrease in crystallinity at peak
15° and 22° due to the depolymerization in CG composite. At 60 wt. % composition,
XRD pattern showed the decrease in intensity at peak 26°
indicates that graphene is more dispersed in the cellulose mixture.
This is supported by Fourier transform infrared spectrum of CG composite
where the absorption peaks of C-O stretching are weakened at wavelength
of 1163 and 1032 cm-1, suggested dehydration and rupture
of cellulose. The dehydration and rupture of cellulose result
in the high conductivity of CG composite. This research is believed
to provide an eco-friendly method to produce cellulose/graphene
composite which is useful in future applications of energy.
Keywords:
Cellulose/graphene composite; conductivity; ionic liquid; XRD pattern
ABSTRAK
Kesan kandungan grafin
terhadap struktur dan kekonduksian komposit selulosa/grafin (CG)
mesra alam telah dikaji. Komposisi berbeza kandungan grafin daripada
0 kepada 70 % bt. telah disediakan melalui kaedah sol-gel. Cecair
ionik 1-butil-3-metil-imidazolium klorida telah digunakan untuk
menyebarkan grafin antara selulosa. Kajian menunjukkan bahawa
komposit CG dengan
komposisi grafin yang lebih tinggi mempamerkan kekonduksian lebih
tinggi. Kekonduksian tertinggi (2.85×10-4 S cm-1)
diperhatikan pada komposisi 60 % bt. grafin. Sampel tanpa grafin
menunjukkan kekonduksian terendah 1.77×10-7 S cm-1
yang bertindak sebagai penebat. Kekonduksian tinggi
komposit CG boleh
dikaitkan dengan corak pembelauan sinar-X (XRD).
Corak XRD α-selulosa menunjukkan penurunan penghabluran pada
puncak 15° dan 22° yang mungkin disebabkan oleh penceraian
polimer pada komposit CG. Pada komposisi 60 % bt., corak XRD menunjukkan
penurunan dalam keamatan di puncak 26° yang menunjukkan bahawa
grafin lebih tersebar dalam campuran selulosa. Ini disokong oleh
spektrum inframerah transformasi Fourier (FTIR) komposit CG,
dengan puncak penyerapan regangan C-O menjadi lemah pada panjang
gelombang 1163 dan 1032 cm-1, mencadangkan berlakunya dehidrasi
dan perpecahan di dalam selulosa. Hal ini menyebabkan kekonduksian
yang tinggi pada komposit CG. Kajian ini dipercayai untuk menyediakan
satu kaedah yang mesra alam bagi menghasilan komposit selulosa/grafin
yang berguna dalam aplikasi tenaga pada masa hadapan.
Kata kunci: Cecair ionik; corak XRD;
kekonduksian; komposit selulosa/grafin
REFERENCES
Bag, S., Samanta, A., Bhunia, P. & Raj, C.R. 2016. Rational
functionalization of reduced graphene oxide with imidazolium-based ionic liquid
for supercapacitor application. International Journal of Hydrogen Energy 41(47):
22134- 22143. doi: 10.1016/j.ijhydene.2016.08.041.
Bhaumik, P. & Dhepe, P.L. 2015. Conversion of biomass into
sugars. In Biomass Sugars for Non-Fuel Applications, edited by Dmitry,
M. & Olga, S. Pune, India: Royal Society of Chemistry. pp. 1-53. doi:
10.1039/9781782622079-00001.
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S.
& Geim, A.K. 2009. The electronic properties of graphene. Reviews of
Modern Physics 81(1): 109-162. doi: 10.1103/ RevModPhys.81.109.
Changgu, L., Xiaoding, W., Jeffrey, W.K. & James, H. 2008.
Measurement of elastic properties and intrinsic strength of monolayer graphene. Danish National Research Foundation 321: 385-388. doi:
10.1126/science.1156211.
Feng, Y.Y., Zhang, X.Q., Shen, Y.T., Yoshino, K. & Feng, W.
2012. A mechanically strong, flexible and conductive film based on bacterial
cellulose/graphene nanocomposite. Carbohydrate Polymers 87(1): 644-649.
doi: 10.1016/j. carbpol.2011.08.039.
Hossain, M.M., Hahn, J.R. & Ku, B.C. 2014. Synthesis of highly
dispersed and conductive graphene sheets by exfoliation of preheated graphite
in a sealed bath and its applications to polyimide nanocomposites. Buletin
of the Korean Chemical Society 35(7): 2049-2056. doi:
10.5012/bkcs.2014.35.7.2049.
Lavoinea, N., Guillard, V., Deslogesa, I., Gontard, N. &
Brasa, J. 2016. Active bio-based food-packaging: Diffusion and release of
activesubstances through and from cellulose nanofiber coating
towardfood-packaging design. Carbohydrate Polymers 149: 40-50. doi:
10.1016/j.carbpol.2016.04.048.
Li, J., Cui, J., Yang, J., Ma, Y., Qiu, H. & Yang, J. 2016.
Silanized graphene oxide reinforced organofunctional silane composite coatings
for corrosion protection. Progress in Organic Coatings 99: 443-451. doi:
10.1016/j.porgcoat.2016.07.008.
Mahmood, N., Zhang, C., Yin, H. & Hou, Y. 2014. Graphene-based
nanocomposites for energy storage and conversion in lithium batteries,
supercapacitors and fuel cells. Journal of Material Chemistry A 2(1):
15-32. doi: 10.1039/c3ta13033a.
Pang, J., Liu, X., Zhang, X., Wu, Y. & Sun, R. 2013.
Fabrication of cellulose film with enhanced mechanical properties in ionic
liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6(4):
1270-1284. doi: 10.3390/ma6041270.
Patel, M.U.M., Luong, N.D., Seppala, J., Tchernychova, E. &
Dominko, R. 2014. Low surface area graphene/cellulose composite as a host
matrix for lithium sulphur batteries. Journal of Power Sources 254:
55-61. doi: http://dx.doi. org/10.1016/j.jpowsour.2013.12.081.
Qu, M., Yao, Y., He, J., Ma, X., Liu, S., Feng, J. & Hou, L.
2016. Tribological performance of functionalized ionic liquid and Cu
microparticles as lubricating additives in sunflower seed oil. Tribology
International 104: 166-174. doi: 10.1016/j. triboint.2016.08.035.
Sadasivuni, K.K., Ponnamma, D., Ko, H.U., Kim, H.C., Zhai, L.
& Kim, J. 2016. Flexible NO2 sensors from renewable cellulose
nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical 233:
633-638. doi: 10.1016/j. snb.2016.04.134.
Safa, M., Chamaani, A., Chawla, N. & El-Zahab, B. 2016.
Polymeric ionic liquid gel electrolyte for room temperature lithium battery
applications. Electrochimica Acta 213: 587- 593. doi:
10.1016/j.electacta.2016.07.118.
Singh, B.N., Panda, N.N., Mund, R. & Pramanik, K. 2016.
Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced
biomimetic potential for bone tissue engineering application. Carbohydrate
Polymers 151: 335- 347. doi: 10.1016/j.carbpol.2016.05.088.
Soheilmoghaddam, M., Pasbakhsh, P., Wahit, M.U., Bidsorkhi, H.C.,
Pour, R.H., Whye, W.T., & De Silva, R.T. 2014. Regenerated cellulose
nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL
ionic liquid. Polymer 55(14): 3130-3138. doi: 10.1016/j.
polymer.2014.05.021.
Tian, M.W., Qu, L.J., Zhang, X.S., Zhang, K., Zhu, S.F., Guo,
X.Q., Han, G.T., Tang, X.N. & Sun, Y.N. 2014. Enhanced mechanical and
thermal properties of regenerated cellulose/ graphene composite fibers. Carbohydrate
Polymers 111: 456-462. doi: 10.1016/j.carbpol.2014.05.016.
Troter, D.Z., Todorovic, Z.B., Dokic-Stojanovic, D.R.,
Stamenkovic, O.S. & Veljkovic, V.B. 2016. Application of ionic liquids and
deep eutectic solvents in biodiesel production: A review. Renewable and
Sustainable Energy Reviews 61: 473-500. doi: 10.1016/j.rser.2016.04.011.
Xu, M., Huang, Q., Wang, X. & Sun, R. 2015. Highly tough
cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial
Crops and Products 70: 56-63. doi: http://
dx.doi.org/10.1016/j.indcrop.2015.03.004.
Ye, W., Li, X., Zhu,
H., Wang, X., Wang, S., Wang, H. & Sun, R. 2016. Green fabrication of
cellulose/graphene composite in ionic liquid and its electrochemical and
photothermal properties. Chemical Engineering Journal 299: 45-55. doi:
http://dx.doi.org/10.1016/j.cej.2016.04.030.
Zhang,
D.Y., Ge, C.W., Wang, J.Z., Zhang, T.F., Wu, Y.C. & Liang, F.X. 2016.
Single-layer graphene-TiO2 nanotubes array heterojunction for
ultraviolet photodetector application. Applied Surface Science 387:
1162-1168. doi: 10.1016/j. apsusc.2016.07.041.
Zhao,
Y., Li, X.G., Zhou, X. & Zhang, Y.N. 2016. Review on the graphene based
optical fiber chemical and biological sensors. Sensors and Actuators B:
Chemical 231: 324-340. doi: 10.1016/j.snb.2016.03.026.
*Corresponding author; email: alya5288@um.edu.my