Sains Malaysiana 46(7)(2017): 1025–1031

http://dx.doi.org/10.17576/jsm-2017-4607-03

 

The Effect of Graphene Content on the Structure and Conductivity of Cellulose/Graphene Composite

(Kesan Kandungan Grafin terhadap Struktur dan Kekonduksian Komposit Selulosa/Grafin)

 

FARZANA ABD HAMID1, FAUZANI MD SALLEH1*, NOR SABIRIN MOHAMED2

& SYED BAHARI RAMADZAN SYED ADNAN2

 

1Chemistry Division, Centre for Foundation Studies in Science, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

2Physic Division, Centre for Foundation Studies in Science, University of Malaya

50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 18 October 2016/Accepted: 17 February 2017

 

ABSTRACT

The effect of graphene content on the structure and conductivity of an eco-friendly cellulose/ graphene (CG) composite was investigated. Different compositions of graphene content from 0 to 70 wt. % were prepared using the sol-gel method. Ionic liquids 1-butyl-3-methyl-imidazolium chloride was used to disperse graphene between the cellulose. The investigation showed that CG composite with higher graphene composition exhibits higher conductivity. The highest conductivity (2.85×10-4 S cm-1) was observed at 60 wt. % graphene composition. Sample without graphene showed the lowest conductivity of 1.77×10-7 S cm-1, which acts as an insulator. The high conductivity of CG composite can be associated with the X-ray diffraction (XRD) patterns. The XRD patterns of α-cellulose exhibits a decrease in crystallinity at peak 15° and 22° due to the depolymerization in CG composite. At 60 wt. % composition, XRD pattern showed the decrease in intensity at peak 26° indicates that graphene is more dispersed in the cellulose mixture. This is supported by Fourier transform infrared spectrum of CG composite where the absorption peaks of C-O stretching are weakened at wavelength of 1163 and 1032 cm-1, suggested dehydration and rupture of cellulose. The dehydration and rupture of cellulose result in the high conductivity of CG composite. This research is believed to provide an eco-friendly method to produce cellulose/graphene composite which is useful in future applications of energy.

 

Keywords: Cellulose/graphene composite; conductivity; ionic liquid; XRD pattern

ABSTRAK

Kesan kandungan grafin terhadap struktur dan kekonduksian komposit selulosa/grafin (CG) mesra alam telah dikaji. Komposisi berbeza kandungan grafin daripada 0 kepada 70 % bt. telah disediakan melalui kaedah sol-gel. Cecair ionik 1-butil-3-metil-imidazolium klorida telah digunakan untuk menyebarkan grafin antara selulosa. Kajian menunjukkan bahawa komposit CG dengan komposisi grafin yang lebih tinggi mempamerkan kekonduksian lebih tinggi. Kekonduksian tertinggi (2.85×10-4 S cm-1) diperhatikan pada komposisi 60 % bt. grafin. Sampel tanpa grafin menunjukkan kekonduksian terendah 1.77×10-7 S cm-1 yang bertindak sebagai penebat. Kekonduksian tinggi komposit CG boleh dikaitkan dengan corak pembelauan sinar-X (XRD). Corak XRD α-selulosa menunjukkan penurunan penghabluran pada puncak 15° dan 22° yang mungkin disebabkan oleh penceraian polimer pada komposit CG. Pada komposisi 60 % bt., corak XRD menunjukkan penurunan dalam keamatan di puncak 26° yang menunjukkan bahawa grafin lebih tersebar dalam campuran selulosa. Ini disokong oleh spektrum inframerah transformasi Fourier (FTIR) komposit CG, dengan puncak penyerapan regangan C-O menjadi lemah pada panjang gelombang 1163 dan 1032 cm-1, mencadangkan berlakunya dehidrasi dan perpecahan di dalam selulosa. Hal ini menyebabkan kekonduksian yang tinggi pada komposit CG. Kajian ini dipercayai untuk menyediakan satu kaedah yang mesra alam bagi menghasilan komposit selulosa/grafin yang berguna dalam aplikasi tenaga pada masa hadapan.

 

Kata kunci: Cecair ionik; corak XRD; kekonduksian; komposit selulosa/grafin

REFERENCES

Bag, S., Samanta, A., Bhunia, P. & Raj, C.R. 2016. Rational functionalization of reduced graphene oxide with imidazolium-based ionic liquid for supercapacitor application. International Journal of Hydrogen Energy 41(47): 22134- 22143. doi: 10.1016/j.ijhydene.2016.08.041.

Bhaumik, P. & Dhepe, P.L. 2015. Conversion of biomass into sugars. In Biomass Sugars for Non-Fuel Applications, edited by Dmitry, M. & Olga, S. Pune, India: Royal Society of Chemistry. pp. 1-53. doi: 10.1039/9781782622079-00001.

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. & Geim, A.K. 2009. The electronic properties of graphene. Reviews of Modern Physics 81(1): 109-162. doi: 10.1103/ RevModPhys.81.109.

Changgu, L., Xiaoding, W., Jeffrey, W.K. & James, H. 2008. Measurement of elastic properties and intrinsic strength of monolayer graphene. Danish National Research Foundation 321: 385-388. doi: 10.1126/science.1156211.

Feng, Y.Y., Zhang, X.Q., Shen, Y.T., Yoshino, K. & Feng, W. 2012. A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydrate Polymers 87(1): 644-649. doi: 10.1016/j. carbpol.2011.08.039.

Hossain, M.M., Hahn, J.R. & Ku, B.C. 2014. Synthesis of highly dispersed and conductive graphene sheets by exfoliation of preheated graphite in a sealed bath and its applications to polyimide nanocomposites. Buletin of the Korean Chemical Society 35(7): 2049-2056. doi: 10.5012/bkcs.2014.35.7.2049.

Lavoinea, N., Guillard, V., Deslogesa, I., Gontard, N. & Brasa, J. 2016. Active bio-based food-packaging: Diffusion and release of activesubstances through and from cellulose nanofiber coating towardfood-packaging design. Carbohydrate Polymers 149: 40-50. doi: 10.1016/j.carbpol.2016.04.048.

Li, J., Cui, J., Yang, J., Ma, Y., Qiu, H. & Yang, J. 2016. Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Progress in Organic Coatings 99: 443-451. doi: 10.1016/j.porgcoat.2016.07.008.

Mahmood, N., Zhang, C., Yin, H. & Hou, Y. 2014. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. Journal of Material Chemistry A 2(1): 15-32. doi: 10.1039/c3ta13033a.

Pang, J., Liu, X., Zhang, X., Wu, Y. & Sun, R. 2013. Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6(4): 1270-1284. doi: 10.3390/ma6041270.

Patel, M.U.M., Luong, N.D., Seppala, J., Tchernychova, E. & Dominko, R. 2014. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries. Journal of Power Sources 254: 55-61. doi: http://dx.doi. org/10.1016/j.jpowsour.2013.12.081.

Qu, M., Yao, Y., He, J., Ma, X., Liu, S., Feng, J. & Hou, L. 2016. Tribological performance of functionalized ionic liquid and Cu microparticles as lubricating additives in sunflower seed oil. Tribology International 104: 166-174. doi: 10.1016/j. triboint.2016.08.035.

Sadasivuni, K.K., Ponnamma, D., Ko, H.U., Kim, H.C., Zhai, L. & Kim, J. 2016. Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites. Sensors and Actuators B: Chemical 233: 633-638. doi: 10.1016/j. snb.2016.04.134.

Safa, M., Chamaani, A., Chawla, N. & El-Zahab, B. 2016. Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications. Electrochimica Acta 213: 587- 593. doi: 10.1016/j.electacta.2016.07.118.

Singh, B.N., Panda, N.N., Mund, R. & Pramanik, K. 2016. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydrate Polymers 151: 335- 347. doi: 10.1016/j.carbpol.2016.05.088.

Soheilmoghaddam, M., Pasbakhsh, P., Wahit, M.U., Bidsorkhi, H.C., Pour, R.H., Whye, W.T., & De Silva, R.T. 2014. Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer 55(14): 3130-3138. doi: 10.1016/j. polymer.2014.05.021.

Tian, M.W., Qu, L.J., Zhang, X.S., Zhang, K., Zhu, S.F., Guo, X.Q., Han, G.T., Tang, X.N. & Sun, Y.N. 2014. Enhanced mechanical and thermal properties of regenerated cellulose/ graphene composite fibers. Carbohydrate Polymers 111: 456-462. doi: 10.1016/j.carbpol.2014.05.016.

Troter, D.Z., Todorovic, Z.B., Dokic-Stojanovic, D.R., Stamenkovic, O.S. & Veljkovic, V.B. 2016. Application of ionic liquids and deep eutectic solvents in biodiesel production: A review. Renewable and Sustainable Energy Reviews 61: 473-500. doi: 10.1016/j.rser.2016.04.011.

Xu, M., Huang, Q., Wang, X. & Sun, R. 2015. Highly tough cellulose/graphene composite hydrogels prepared from ionic liquids. Industrial Crops and Products 70: 56-63. doi: http:// dx.doi.org/10.1016/j.indcrop.2015.03.004.

Ye, W., Li, X., Zhu, H., Wang, X., Wang, S., Wang, H. & Sun, R. 2016. Green fabrication of cellulose/graphene composite in ionic liquid and its electrochemical and photothermal properties. Chemical Engineering Journal 299: 45-55. doi: http://dx.doi.org/10.1016/j.cej.2016.04.030.

Zhang, D.Y., Ge, C.W., Wang, J.Z., Zhang, T.F., Wu, Y.C. & Liang, F.X. 2016. Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Applied Surface Science 387: 1162-1168. doi: 10.1016/j. apsusc.2016.07.041.

Zhao, Y., Li, X.G., Zhou, X. & Zhang, Y.N. 2016. Review on the graphene based optical fiber chemical and biological sensors. Sensors and Actuators B: Chemical 231: 324-340. doi: 10.1016/j.snb.2016.03.026.

 

 

*Corresponding author; email: alya5288@um.edu.my

 

 

 

 

previous