Sains Malaysiana 46(7)(2017): 1039–1045
http://dx.doi.org/10.17576/jsm-2017-4607-05
Synthesis of Graphene
Flakes over Recovered Copper Etched in Ammonium
Persulfate Solution
(Sintesis Grafin Serpih
melalui Kuprum Pulih yang Dipunarkan dalam Larutan
Ammonium Persulfat)
M.K. NIZAM, D. SEBASTIAN, M.I. KAIRI, M. KHAVARIAN
& A.R. MOHAMED*
School
of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri
Ampangan
14300
Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
Received:
21 December 2016/Accepted: 1 March 2017
ABSTRACT
The synthesis of high
quality graphene via economic way is highly desirable for practical
applications. In this study, graphene flake was successfully synthesized on
Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate
solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with
good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM,
Raman spectroscopy and SAED analysis were carried out on the
synthesized graphene. The formation of single, bilayer and few layer of
graphene from Cu/MgO catalyst derived from recovered Cu was feasible.
Keywords: CVD;
flake; graphene; MgO; recovered Cu
ABSTRAK
Sintesis grafin berkualiti
tinggi secara ekonomi adalah sangat diperlukan untuk aplikasi
praktikal. Dalam kajian ini, grafin serpih telah berjaya disintesis
menggunakan pemangkin Cu/MgO yang diperoleh daripada Cu pulih
melalui punaran dalam larutan ammonium persulfat. Cu pulih bertindak
sebagai logam aktif yang cekap dalam pemangkin Cu/MgO dengan
struktur kristal yang baik dan komposisi berdasarkan keputusan
XRD dan XRF. FESEM,
EDX,
HRTEM,
Raman spektroskopi dan analisis SAED telah dijalankan ke atas
grafin yang disintesis. Pembentukan tunggal, dwilapisan dan
beberapa lapisan grafin daripada pemangkin Cu/MgO yang diperoleh
daripada Cu pulih telah dicapai.
Kata kunci: CVD; grafin; MgO;
pemulihan Cu; serpih
REFERENCES
Chua, C.K. & Pumera, M. 2014. Chemical reduction of graphene
oxide: A synthetic chemistry viewpoint. Chemical Society Reviews 43(1):
291-312.
El Rouby, W.M.A. 2015. Crumpled graphene: Preparation and
applications. RSC Adv. 5(82): 66767-66796.
Fan, T., Zeng, W., Niu, Q., Tong, S., Cai, K., Liu, Y., Huang, W.,
Yong, M. & Epstein, A.J. 2015. Fabrication of high-quality graphene oxide
nanoscrolls and application in supercapacitor. Nanoscale Research Letters 10:
192.
Farrouji, A., Eddine, A., Bouzit, S., Boualy, B., Mehdi, A.,
Firdoussi, L. & Ali, M. 2015. Degradation of methylene blue using
synthesized nanostructured CuO with high specific surface area through
catalytic oxidation. International Research Journal of Pure and Applied
Chemistry 8(4): 190-197.
First, P.N., De Heer, W.A., Seyller, T., Berger, C., Stroscio,
J.A. & Moon, J.S. 2010. Epitaxial graphenes on silicon carbide. MRS
Bulletin 35(April): 296-305.
Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature
Materials 6(3): 183-191.
Hu, H., Zhao, B., Itkis, M.E. & Haddon, R.C. 2003. Nitric acid
purification of single-walled carbon nanotubes. The Journal of Physical
Chemistry B 107(50): 13838-13842. doi: 10.1021/ jp035719i.
Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R.,
Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. & Ruoff,
R.S. 2009a. Large-area synthesis of high-quality and uniform graphene films on
copper foils. Science 324(5932): 1312-1314. doi:10.1126/science.1171245.
Li, X., Cai, W., Colombo, L. & Ruoff, R.S. 2009b. Evolution of
graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters 9(12):
4268-4272.
Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab,
M.G., Kim, K. & Fal-ko, V.I. 2012. A roadmap for graphene. Nature 490(7419):
192-200.
Sarno, M., Cirillo, C., Piscitelli, R. & Ciambelli, P. 2013. A
study of the key parameters, including the crucial role of H2 for uniform
graphene growth on Ni foil. Journal of Molecular Catalysis A: Chemical 366(January):
303-314.
Siriwardane, R.V., Poston Jr., J.A., Fisher, E.P., Shen, M-S.
& Miltz, A.L. 1999. Decomposition of the sulfates of copper, iron (II),
iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study. Applied
Surface Science 152(3): 219-236.
Song, H-J. & Li, N. 2011. Frictional behavior of oxide
graphene nanosheets as water-base lubricant additive. Applied Physics A 105(4):
827-832.
Sun, Z.,, Yan, Z., Yao, J., Beitler, E., Zhu, Y. & Tour, J.M.
2010. Growth of graphene from solid carbon sources. Nature 468(7323):
549-552.
Tchoul, M.N., Ford, W.T., Lolli, G., Resasco, D.E. & Arepalli,
S. 2007. Effect of mild nitric acid oxidation on dispersability, size, and
structure of single-walled carbon nanotubes. Chemistry of Materials 19(23):
5765-5772. doi: 10.1021/
cm071758l.
Wang, L., Ara, M., Wadumesthrige, K., Salley, S. & Simon Ng,
K.Y. 2013. Graphene nanosheet supported bifunctional catalyst for high cycle
life Li-air batteries. Journal of Power Sources 234: 8-15.
Wolf, E.L. 2014. Chapert 2. Practical productions of graphene,
supply and cost. In Applications of Graphene, SpringerBrief in
Materials. New York: Springer. pp. 19-38.
Yan, J., Wei, T., Shao,
B., Fan, Z., Qian, W., Zhang, M. & Wei, F. 2010. Preparation of a graphene
nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2):
487-493.
Yoo,
E. & Zhou, H. 2011. Li-air rechargeable battery based on metal-free
graphene nanosheet catalysts. ACS Nano 5(4): 3020-3026.
Zhang,
D.W., Li, X.D., Li, H.B., Chen, S., Sun, Z., Yin, X.J. & Huang, S.M. 2011.
Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15):
5382-5388.
*Corresponding author; email: chrahman@usm.my