Sains Malaysiana 46(7)(2017): 1039–1045

http://dx.doi.org/10.17576/jsm-2017-4607-05

 

Synthesis of Graphene Flakes over Recovered Copper Etched in Ammonium

Persulfate Solution

(Sintesis Grafin Serpih melalui Kuprum Pulih yang Dipunarkan dalam Larutan

Ammonium Persulfat)

 

M.K. NIZAM, D. SEBASTIAN, M.I. KAIRI, M. KHAVARIAN & A.R. MOHAMED*

 

School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan

14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia

 

Received: 21 December 2016/Accepted: 1 March 2017

 

ABSTRACT

The synthesis of high quality graphene via economic way is highly desirable for practical applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM, Raman spectroscopy and SAED analysis were carried out on the synthesized graphene. The formation of single, bilayer and few layer of graphene from Cu/MgO catalyst derived from recovered Cu was feasible.

 

Keywords: CVD; flake; graphene; MgO; recovered Cu

 

ABSTRAK

Sintesis grafin berkualiti tinggi secara ekonomi adalah sangat diperlukan untuk aplikasi praktikal. Dalam kajian ini, grafin serpih telah berjaya disintesis menggunakan pemangkin Cu/MgO yang diperoleh daripada Cu pulih melalui punaran dalam larutan ammonium persulfat. Cu pulih bertindak sebagai logam aktif yang cekap dalam pemangkin Cu/MgO dengan struktur kristal yang baik dan komposisi berdasarkan keputusan XRD dan XRF. FESEM, EDX, HRTEM, Raman spektroskopi dan analisis SAED telah dijalankan ke atas grafin yang disintesis. Pembentukan tunggal, dwilapisan dan beberapa lapisan grafin daripada pemangkin Cu/MgO yang diperoleh daripada Cu pulih telah dicapai.

Kata kunci: CVD; grafin; MgO; pemulihan Cu; serpih

REFERENCES

Chua, C.K. & Pumera, M. 2014. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews 43(1): 291-312.

El Rouby, W.M.A. 2015. Crumpled graphene: Preparation and applications. RSC Adv. 5(82): 66767-66796.

Fan, T., Zeng, W., Niu, Q., Tong, S., Cai, K., Liu, Y., Huang, W., Yong, M. & Epstein, A.J. 2015. Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor. Nanoscale Research Letters 10: 192.

Farrouji, A., Eddine, A., Bouzit, S., Boualy, B., Mehdi, A., Firdoussi, L. & Ali, M. 2015. Degradation of methylene blue using synthesized nanostructured CuO with high specific surface area through catalytic oxidation. International Research Journal of Pure and Applied Chemistry 8(4): 190-197.

First, P.N., De Heer, W.A., Seyller, T., Berger, C., Stroscio, J.A. & Moon, J.S. 2010. Epitaxial graphenes on silicon carbide. MRS Bulletin 35(April): 296-305.

Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6(3): 183-191.

Hu, H., Zhao, B., Itkis, M.E. & Haddon, R.C. 2003. Nitric acid purification of single-walled carbon nanotubes. The Journal of Physical Chemistry B 107(50): 13838-13842. doi: 10.1021/ jp035719i.

Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L. & Ruoff, R.S. 2009a. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932): 1312-1314. doi:10.1126/science.1171245.

Li, X., Cai, W., Colombo, L. & Ruoff, R.S. 2009b. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Letters 9(12): 4268-4272.

Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K. & Fal-ko, V.I. 2012. A roadmap for graphene. Nature 490(7419): 192-200.

Sarno, M., Cirillo, C., Piscitelli, R. & Ciambelli, P. 2013. A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil. Journal of Molecular Catalysis A: Chemical 366(January): 303-314.

Siriwardane, R.V., Poston Jr., J.A., Fisher, E.P., Shen, M-S. & Miltz, A.L. 1999. Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study. Applied Surface Science 152(3): 219-236.

Song, H-J. & Li, N. 2011. Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Applied Physics A 105(4): 827-832.

Sun, Z.,, Yan, Z., Yao, J., Beitler, E., Zhu, Y. & Tour, J.M. 2010. Growth of graphene from solid carbon sources. Nature 468(7323): 549-552.

Tchoul, M.N., Ford, W.T., Lolli, G., Resasco, D.E. & Arepalli, S. 2007. Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chemistry of Materials 19(23): 5765-5772. doi: 10.1021/ cm071758l.

Wang, L., Ara, M., Wadumesthrige, K., Salley, S. & Simon Ng, K.Y. 2013. Graphene nanosheet supported bifunctional catalyst for high cycle life Li-air batteries. Journal of Power Sources 234: 8-15.

Wolf, E.L. 2014. Chapert 2. Practical productions of graphene, supply and cost. In Applications of Graphene, SpringerBrief in Materials. New York: Springer. pp. 19-38.

Yan, J., Wei, T., Shao, B., Fan, Z., Qian, W., Zhang, M. & Wei, F. 2010. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48(2): 487-493.

Yoo, E. & Zhou, H. 2011. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4): 3020-3026.

Zhang, D.W., Li, X.D., Li, H.B., Chen, S., Sun, Z., Yin, X.J. & Huang, S.M. 2011. Graphene-based counter electrode for dye-sensitized solar cells. Carbon 49(15): 5382-5388.

 

 

*Corresponding author; email: chrahman@usm.my

 

 

 

 

previous