Sains Malaysiana 46(7)(2017): 1069–1074
http://dx.doi.org/10.17576/jsm-2017-4607-08
Effect of Heating Duration on the
Synthesis of Silicon Carbide Nanotubes by Microwave Heating of MWCNTs and
Silica
(Kesan Tempoh Pemanasan terhadap Sintesis Tiub Nano Silikon Karbida oleh Pemanasan Gelombang Mikro MWCNTs dan Silika)
TONY
VOO
CHUNG
SUNG1,
VOON
CHUN
HONG1*,
LEE
CHANG
CHUAN2,
SUBASH
C.B.
GOPINATH1,4,
LIM
BEE
YING3,
MOHD KHAIRUDDIN
MOHD
ARSHAD1,
FOO
KAI
LOONG1,
UDA
HASHIM1,
RUSLINDA
A.
RAHIM1,
MOHD
NASHA
AIN
BIN NORDIN5
& NOR AZIZAH PARMIN1
1Institute of Nano Electronic
Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Seriab
01000 Kangar, Perlis Indera Kayangan, Malaysia
2School of Manufacturing
Engineering, Universiti Malaysia Perlis (UniMAP),
Kampus Alam Pauh Putra, 02600 Arau, Perlis Indera Kayangan, Malaysia
3School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Jejawi,
02600 Arau, Perlis Indera Kayangan, Malaysia
4School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP),
02600 Arau,
Perlis Indera Kayangan, Malaysia
5Advanced Materials Research
Centre, Kulim Hi-Tech Park, 09000 Kulim, Kedah Darul Aman
Malaysia
Received: 23 December 2016/Accepted:
21 February 2017
ABSTRACT
In this article, the effect
of heating duration on the synthesis of silicon carbide nanotubes (SiCNTs) was reported. SiCNTs were synthesized from
blend of silicon dioxide (SiO2) and multi-walled
carbon nanotubes (MWCNTs) in the ratio of 1:3 by using
the microwave heating at 1400°C and maintained at duration of 20, 40 and 60
min, respectively. SiCNTs synthesized at
heating duration of 40 and 60 min showed the presence of single phase β-SiC in X-ray diffraction patterns. Meanwhile, field
emission scanning electron microscope images showed that SiCNTs were formed and no residual of SiO2 and MWCNTs
was observed for SiCNTs formed at heating
duration of 40 and 60 min. Transmission electron microscopy images showed the SiCNTs have inter-planar spacing
of 0.263 nm and tubular structure of nanotube were retained. The peak
corresponded to β-SiC was observed at wavelength
of 465 nm from the photoluminescence spectroscopy and associated with energy
band gap of 2.67 eV. Absorption bands of Si-C bond were detected at 806.23 cm-1 from
the fourier transform
infrared spectra. High purity SiCNTs was obtained at 40 and 60 min as indicated by low weight loss by
thermo-gravimetric analysis. 40 min is the most suitable heating duration for
the synthesis of single phase β-SiCNTs.
Keywords: Microwave
processing; multi-walled carbon nanotube; silicon carbide nanotube; silicon
dioxide; sintering
ABSTRAK
Dalam kertas ini,
kesan jangka masa pemanasan terhadap sintesis tiub nano
silikon karbida
(SiCNTs) telah
dilaporkan. SiCNTs telah
disintesis daripada
campuran silikon dioksida (SiO2) dan
tiub nano
karbon berbilang dinding (MWCNTs) dalam
nisbah 1:3 dengan
menggunakan pemanasan gelombang mikro pada 1400°C dan dikekalkan pada jangka masa 20, 40 dan 60 min.
SiCNTs yang disintesis
dengan tempoh
pemanasan 40 dan 60 min telah menunjukkan kehadiran β-SiC fasa tunggal dalam
pola pembelauan
sinar-X. Sementara itu, imej pancaran medan mikroskopi
elektron pengimbasan menunjukkan bahawa SiCNTs telah
terbentuk dan
tiada sisa SiO2 dan MWCNTs diperhatikan
untuk SiCNTs
terbentuk dengan
tempoh pemanasan 40 dan 60 min. Imej mikroskopi elektron pancaran menunjukkan jarak antara satah
untuk SiCNTs
adalah 0.263 nm dan
struktur tiub nano
dikekalkan. Puncak ß-SiC diperhatikan
pada jarak
gelombang 465 nm dari spektroskopi fotoluminesen dan dikaitkan dengan
jurang jalur
tenaga sebanyak 2.67 eV.
Belang penyerapan ikatan Si-C telah dikesan pada 806.23 cm-1 dari spektroskopi transformasi fourier
inframerah. Ketulenan SiCNTs yang tinggi telah diperoleh
dengan tempoh
pemanasan 40 dan 60 min seperti yang ditunjukkan oleh kesusutan berat yang rendah dengan analisis thermogravimetrik. 40 min adalah tempoh pemanasan
yang paling sesuai untuk
sintesis β-SiCNTs
fasa tunggal.
Kata kunci: Pensinteran;
proses gelombang mikro; silikon dioksida; tiub nano karbon berbilang dinding; tiub nano silikon karbida
REFERENCES
Chen, K., Zhaohui, H., Juntong, H., Minghao, F., Yan, G.L., Haipeng,
J. & Li, Y. 2013. Sythesis of SiC Nanowires
by thermal evaporation method without catalyst assistant. Ceramics
International 39: 1957-1962.
Chen, J., Qiang, S., Lipeng, X., Yang, L., Renjuan, L. & Xiaoyan, Z.
2011. A simple catalyst-free route for large-scale synthesis of SiC nanowires. Journal of Alloys and Compounds 509:
6844-6847.
Chen, J., Weihua,
T., Lipeng, X. & Qiang,
S. 2010. Band gap characterization and photoluminescence
properties of SiC nanowires. Applied Physics A 102: 213-217.
Chiu, S-C. & Li, Y-Y. 2009. SiC nanowires in large quantities: Synthesis, band gap
characterization, and photoluminescence properties. Journal of Crystal
Growth 311: 1036-1041.
Ding, J., Chengji,
D., Wenjie, Y., Hongxi, Z.
& Xiaojun, Z. 2014. Novel
synthesis and characterization of silicon carbide nanowires on graphite flakes. Ceramics International 40: 4001-4007.
Ebadzadeh, T. & Marzban-Rad, E. 2009. Microwave hybrid synthesis of
silicon carbide nanopowders. Materials
Characterization 60: 69-72.
Fan, J.Y., Wu,
X.L. & Paul, K.C. 2006. Low-dimensional SiC nanostructures: Fabrication,
luminescence, and electrical properties. Progress in Materials Science 51:
983-1031.
Hashimoto, S., Syuho, O. & Kiyoshi, H. 2011. Mechanism for
the formation of SiC by carbothermal reduction reaction using a microwave heating technique. Journal of
the Ceramic Society of Japan 119(1394): 740-744.
Kharissova, O.V. & Kharisov, B.I. 2014. Variations of interlayer spacing
in carbon nanotubes. RSC Advances 4: 30807-30815. DOI:
10.1039/C4RA04201H.
Mahajan, A., Kingo,
A., Kukovecz, Á., Konya, Z.
& Vilarinho, P.M. 2013. Studies
on the thermal decomposition of multiwall carbon nanotubes under different
atmospheres. Materials Letters 90: 165-168.
Menon, M.,
Ernst, R., Andreas, M., George, F. & Antonis, A.
2004. Structure and stability of SiC nanotubes. Physical Review B 69: 115322-1-4.
Moshtaghioun, B.M., Poyato, R., Cumbrera, F.L., De Bernardi- Martin, S., Monshi, A., Abbasi, M.H., Karimzadeh,
F. & Dominguez-Rodriguez, A. 2012. Rapid carbothermic synthesis of silicon carbide nano powders by using
microwave heating. Journal of the European Ceramic Society 32:
1787-1794.
Najafi, A., Golestani, F.F., Rezaie, H.R.
& Ehsani, N. 2012. Synthesis and characterization
of SiC nano powder with low
residual carbon processed by sol-gel method. Powder Technology 219:
202-210.
Najafi, A., Golestani, F.F., Rezaie, H.R.
& Ehsani, N. 2011. A study on
sol-gel synthesis and characterization of SiC nano powder. Journal of Sol-Gel Science and
Technology 59: 205-214.
Oghbaei, M. & Mirzaee, O. 2010. Microwave versus conventional
sintering: A review of fundamentals, advantages and applications.
Journal of Alloys and Compounds 494: 175-189.
Oh, E., Jung, S-H., Lee, J., Cho,
S., Kim, H-J., Lee, B-R., Lee, K-H., Song, K-H., Choi, C-H.
& Han, D-S. 2011. Selective synthesis of SiC
and SiOx nanowires by direct microwave irradiation. Japanese
Journal of Applied Physics 50: 2R.
Satapathy, L.N., Ramesh,
P.D., Dinesh, A. & Rustum, R.
2005. Microwave synthesis
of phase-pure, fine silicon carbide powder. Materials
Research Bulletin 40: 1871-1882.
Wu, R., Kun, Z., Chee, Y.Y., Jun,
W. & Yi, P. 2015. Recent progress in synthesis,
properties and potential applications of SiC nanomaterials. Progress in Materials Science 72: 1-60.
Xie, Z., Deliang, T. & Jiqing, W.
2007. Synthesis of silicon carbide nanotubes by chemical vapor
deposition. Journal of Nanoscience and Nanotechnology 7: 647-652.
Yang, Z., Yongde, X. & Robert, M. 2004. High surface
area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chemistry of Materials 16: 3877-3884.
Zhang, J., Wei,
L., Quanli, J., Liangxu,
L., Juntong, H. & Shaowei,
Z. 2015. Molten salt assisted synthesis of 3C-SiC nanowire and its photoluminescence
properties. Ceramics International 41: 12614-12620.
*Corresponding
author; email: chvoon@unimap.edu.my