Sains Malaysiana 46(7)(2017): 1069–1074

http://dx.doi.org/10.17576/jsm-2017-4607-08

 

Effect of Heating Duration on the Synthesis of Silicon Carbide Nanotubes by Microwave Heating of MWCNTs and Silica

(Kesan Tempoh Pemanasan terhadap Sintesis Tiub Nano Silikon Karbida oleh Pemanasan Gelombang Mikro MWCNTs dan Silika)

 

TONY VOO CHUNG SUNG1, VOON CHUN HONG1*, LEE CHANG CHUAN2, SUBASH C.B. GOPINATH1,4, LIM BEE YING3, MOHD KHAIRUDDIN MOHD ARSHAD1, FOO KAI LOONG1, UDA HASHIM1, RUSLINDA A. RAHIM1, MOHD NASHA AIN BIN NORDIN5

& NOR AZIZAH PARMIN1

 

1Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Seriab

01000 Kangar, Perlis Indera Kayangan, Malaysia

 

2School of Manufacturing Engineering, Universiti Malaysia Perlis (UniMAP),

Kampus Alam Pauh Putra, 02600 Arau, Perlis Indera Kayangan, Malaysia

 

3School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Jejawi,

02600 Arau, Perlis Indera Kayangan, Malaysia

 

4School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau,

Perlis Indera Kayangan, Malaysia

 

5Advanced Materials Research Centre, Kulim Hi-Tech Park, 09000 Kulim, Kedah Darul Aman

Malaysia

 

Received: 23 December 2016/Accepted: 21 February 2017

 

ABSTRACT

In this article, the effect of heating duration on the synthesis of silicon carbide nanotubes (SiCNTs) was reported. SiCNTs were synthesized from blend of silicon dioxide (SiO2) and multi-walled carbon nanotubes (MWCNTs) in the ratio of 1:3 by using the microwave heating at 1400°C and maintained at duration of 20, 40 and 60 min, respectively. SiCNTs synthesized at heating duration of 40 and 60 min showed the presence of single phase β-SiC in X-ray diffraction patterns. Meanwhile, field emission scanning electron microscope images showed that SiCNTs were formed and no residual of SiO2 and MWCNTs was observed for SiCNTs formed at heating duration of 40 and 60 min. Transmission electron microscopy images showed the SiCNTs have inter-planar spacing of 0.263 nm and tubular structure of nanotube were retained. The peak corresponded to β-SiC was observed at wavelength of 465 nm from the photoluminescence spectroscopy and associated with energy band gap of 2.67 eV. Absorption bands of Si-C bond were detected at 806.23 cm-1 from the fourier transform infrared spectra. High purity SiCNTs was obtained at 40 and 60 min as indicated by low weight loss by thermo-gravimetric analysis. 40 min is the most suitable heating duration for the synthesis of single phase β-SiCNTs.

 

Keywords: Microwave processing; multi-walled carbon nanotube; silicon carbide nanotube; silicon dioxide; sintering

 

ABSTRAK

Dalam kertas ini, kesan jangka masa pemanasan terhadap sintesis tiub nano silikon karbida (SiCNTs) telah dilaporkan. SiCNTs telah disintesis daripada campuran silikon dioksida (SiO2) dan tiub nano karbon berbilang dinding (MWCNTs) dalam nisbah 1:3 dengan menggunakan pemanasan gelombang mikro pada 1400°C dan dikekalkan pada jangka masa 20, 40 dan 60 min. SiCNTs yang disintesis dengan tempoh pemanasan 40 dan 60 min telah menunjukkan kehadiran β-SiC fasa tunggal dalam pola pembelauan sinar-X. Sementara itu, imej pancaran medan mikroskopi elektron pengimbasan menunjukkan bahawa SiCNTs telah terbentuk dan tiada sisa SiO2 dan MWCNTs diperhatikan untuk SiCNTs terbentuk dengan tempoh pemanasan 40 dan 60 min. Imej mikroskopi elektron pancaran menunjukkan jarak antara satah untuk SiCNTs adalah 0.263 nm dan struktur tiub nano dikekalkan. Puncak ß-SiC diperhatikan pada jarak gelombang 465 nm dari spektroskopi fotoluminesen dan dikaitkan dengan jurang jalur tenaga sebanyak 2.67 eV. Belang penyerapan ikatan Si-C telah dikesan pada 806.23 cm-1 dari spektroskopi transformasi fourier inframerah. Ketulenan SiCNTs yang tinggi telah diperoleh dengan tempoh pemanasan 40 dan 60 min seperti yang ditunjukkan oleh kesusutan berat yang rendah dengan analisis thermogravimetrik. 40 min adalah tempoh pemanasan yang paling sesuai untuk sintesis β-SiCNTs fasa tunggal.

 

Kata kunci: Pensinteran; proses gelombang mikro; silikon dioksida; tiub nano karbon berbilang dinding; tiub nano silikon karbida

REFERENCES

Chen, K., Zhaohui, H., Juntong, H., Minghao, F., Yan, G.L., Haipeng, J. & Li, Y. 2013. Sythesis of SiC Nanowires by thermal evaporation method without catalyst assistant. Ceramics International 39: 1957-1962.

Chen, J., Qiang, S., Lipeng, X., Yang, L., Renjuan, L. & Xiaoyan, Z. 2011. A simple catalyst-free route for large-scale synthesis of SiC nanowires. Journal of Alloys and Compounds 509: 6844-6847.

Chen, J., Weihua, T., Lipeng, X. & Qiang, S. 2010. Band gap characterization and photoluminescence properties of SiC nanowires. Applied Physics A 102: 213-217.

Chiu, S-C. & Li, Y-Y. 2009. SiC nanowires in large quantities: Synthesis, band gap characterization, and photoluminescence properties. Journal of Crystal Growth 311: 1036-1041.

Ding, J., Chengji, D., Wenjie, Y., Hongxi, Z. & Xiaojun, Z. 2014. Novel synthesis and characterization of silicon carbide nanowires on graphite flakes. Ceramics International 40: 4001-4007.

Ebadzadeh, T. & Marzban-Rad, E. 2009. Microwave hybrid synthesis of silicon carbide nanopowders. Materials Characterization 60: 69-72.

Fan, J.Y., Wu, X.L. & Paul, K.C. 2006. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Progress in Materials Science 51: 983-1031.

Hashimoto, S., Syuho, O. & Kiyoshi, H. 2011. Mechanism for the formation of SiC by carbothermal reduction reaction using a microwave heating technique. Journal of the Ceramic Society of Japan 119(1394): 740-744.

Kharissova, O.V. & Kharisov, B.I. 2014. Variations of interlayer spacing in carbon nanotubes. RSC Advances 4: 30807-30815. DOI: 10.1039/C4RA04201H.

Mahajan, A., Kingo, A., Kukovecz, Á., Konya, Z. & Vilarinho, P.M. 2013. Studies on the thermal decomposition of multiwall carbon nanotubes under different atmospheres. Materials Letters 90: 165-168.

Menon, M., Ernst, R., Andreas, M., George, F. & Antonis, A. 2004. Structure and stability of SiC nanotubes. Physical Review B 69: 115322-1-4.

Moshtaghioun, B.M., Poyato, R., Cumbrera, F.L., De Bernardi- Martin, S., Monshi, A., Abbasi, M.H., Karimzadeh, F. & Dominguez-Rodriguez, A. 2012. Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating. Journal of the European Ceramic Society 32: 1787-1794.

Najafi, A., Golestani, F.F., Rezaie, H.R. & Ehsani, N. 2012. Synthesis and characterization of SiC nano powder with low residual carbon processed by sol-gel method. Powder Technology 219: 202-210.

Najafi, A., Golestani, F.F., Rezaie, H.R. & Ehsani, N. 2011. A study on sol-gel synthesis and characterization of SiC nano powder. Journal of Sol-Gel Science and Technology 59: 205-214.

Oghbaei, M. & Mirzaee, O. 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds 494: 175-189.

Oh, E., Jung, S-H., Lee, J., Cho, S., Kim, H-J., Lee, B-R., Lee, K-H., Song, K-H., Choi, C-H. & Han, D-S. 2011. Selective synthesis of SiC and SiOx nanowires by direct microwave irradiation. Japanese Journal of Applied Physics 50: 2R.

Satapathy, L.N., Ramesh, P.D., Dinesh, A. & Rustum, R. 2005. Microwave synthesis of phase-pure, fine silicon carbide powder. Materials Research Bulletin 40: 1871-1882.

Wu, R., Kun, Z., Chee, Y.Y., Jun, W. & Yi, P. 2015. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Progress in Materials Science 72: 1-60.

Xie, Z., Deliang, T. & Jiqing, W. 2007. Synthesis of silicon carbide nanotubes by chemical vapor deposition. Journal of Nanoscience and Nanotechnology 7: 647-652.

Yang, Z., Yongde, X. & Robert, M. 2004. High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chemistry of Materials 16: 3877-3884.

Zhang, J., Wei, L., Quanli, J., Liangxu, L., Juntong, H. & Shaowei, Z. 2015. Molten salt assisted synthesis of 3C-SiC nanowire and its photoluminescence properties. Ceramics International 41: 12614-12620.

 

 

*Corresponding author; email: chvoon@unimap.edu.my

 

 

 

 

previous