Sains Malaysiana 46(7)(2017): 1083–1088

http://dx.doi.org/10.17576/jsm-2017-4607-10

 

One-Pot Green Synthesis of Highly Reduced Graphene Oxide Decorated with Silver Nanoparticles

(Sintesis Mesra Alam Satu Pot oleh Grafin Oksida Terkurang Tinggi yang Dihiaskan dengan Zarah Nano Argentum)

 

NUR SUHAILI ABD AZIZ, MUHAMMAD KHAIRULLAH NOR AZMI & ABDUL MANAF HASHIM*

 

Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia,

Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 26 December 2016/Accepted: 27 January 2017

 

ABSTRACT

A one-pot green sonochemical process assisted by ascorbic acid as the reducing agent to produce highly reduced graphene oxide (rGO) decorated with silver nanoparticles (AgNPs) is demonstrated. A complete removal of oxygen-containing group in the GO sheets was confirmed by no observation of the peak corresponds to C-O, C=O and -OH bond. The unexpected decrease of peak intensity corresponds to sp2 hybridized C=C group is explained by a so-called bond polarity effect. The peak observed at ~400 nm seems to show the presence of AgNPs and the red shifting of C=C peak to ~270 nm after the introduction of ascorbic acid indicates the formation of highly reduced GO. The increase of AgNPs size and the crumpled silk-like morphology after the introduction of ascorbic acid also indicate the aggressive reduction of both AgNPs and GO. The increase of ID/IG ratio after the introduction of ascorbic acid seems to indicate the increase of the number of small sp2 domains, the presence of unrepaired defects and the restoration of the sp2 network. This work provides the promising green sonochemical approach by utilizing non-toxic and environmental-friendly reducing agent to produce highly reduced GO decorated with AgNPs for various applications.

 

Keywords: Reduced graphene oxide; silver nanoparticle; sonochemical method

 

ABSTRAK

Proses sonokimia satu pot mesra alam yang dibantu oleh asid askorbik sebagai agen menurunan telah didemonstrasi untuk menghasilkan grafin oksida (rGO) terkurang tinggi yang dihiaskan dengan zarah nano argentum (AgNPs). Pembuangan yang lengkap bagi kumpulan yang mempunyai oksigen pada lembaran GO disahkan oleh tiadanya puncak kepunyaan C-O, C=O dan ikatan –OH. Pengurangan keamatan puncak yang mengejutkan pada kumpulan C=C sp2 terhibrid dapat diterangkan oleh yang dipanggil kesan polariti ikatan. Puncak yang dilihat pada ~400 nm membuktikan kehadiran AgNPs dan peralihan ke kanan oleh puncak C=C pada ~270 nm selepas pengenalan kepada asid askorbik menunjukkan GO telah terturun dengan tinggi. Peningkatan saiz AgNPs dan morfologi seperti sutera renyuk selepas pengenalan kepada asid askorbik juga menunjukkan penurunan yang agresif pada kedua AgNPs dan GO. Peningkatan nisbah ID/IG selepas pengenalan kepada asid asorbik kelihatan menunjukkan peningkatan domain sp2 yang kecil dengan kehadiran kecacatan yang tidak dibaiki dan pemulihan rangkaian sp2. Kertas ini memberikan pendekatan sonokimia yang mesra alam dengan pendekatan menggunakan agen pengurangan yang tidak toksik dan mesra alam sekitar untuk menghasilkan pengurangan GO yang tinggi dihiasi dengan AgNPs untuk pelbagai aplikasi.

 

Kata kunci: Kaedah sonokimia; penurunan grafin oksida; zarah nano argentum

 

REFERENCES

 

Abulizi, A., Okitsu, K. & Zhu, J-J. 2014. Ultrasound assisted reduction of graphene oxide to graphene in l-ascorbic acid aqueous solutions: Kinetics and effects of various factors on the rate of graphene formation. Ultrasonics Sonochemistry21(3): 1174-1181.

Cui, S., Mao, S., Wen, Z., Chang, J., Zhang, Y. & Chen, J. 2013. Controllable synthesis of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia detection. Analyst 138(10): 2877-2882.

Dinh, D.A., Hui, K.S., Hui, K.N., Cho, Y.R., Zhou, W., Hong, X. & Chun, H-H. 2014. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films. Applied Surface Science 298: 62-67.

Feng, H., Cheng, R., Zhao, X., Duan, X. & Li, J. 2013. A low-temperature method to produce highly reduced graphene oxide. Nature Communications 4: 1539. DOI: 10.1038/ ncomms2555.

Gao, J., Liu, F., Liu, Y., Ma, N., Wang, Z. & Zhang, X. 2010a. Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chemistry of Materials 22(7): 2213-2218.

Gao, X., Jang, J. & Nagase, S. 2010b. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. Journal of Physical Chemistry C 114(2): 832-842.

Garcia-Bosch, I., Ribas, X. & Costas, M. 2009. A broad substrate-scope method for fast, efficient and selective hydrogen peroxide-epoxidation. Advanced Synthesis & Catalysis 351(3): 348-352.

Golsheikh, A.M., Huang, N.M., Lim, H.N. & Zakaria, R. 2014. One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver nanoparticles for non-enzymatic detection of H2O2 and optical detection of mercury ions. RSC Advances 4(69): 36401-36411.

He, D., Shen, L., Zhang, X., Wang, Y., Bao, N. & Kung, H.H. 2014. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE Journal 60(8): 2757-2764.

Huang, N.M. 2011. Simple room-temperature preparation of high-yield large-area graphene oxide. International Journal of Nanomedicine 6: 3443-3448.

Huang, Y., Liu, P. & Wang, L.E.I. 2013. Production of stable dispersions of reduced graphene oxide using indole as a reduction agent. Nano 08(02): 1350017.

Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E. & Dai, H. 2008. Highly conducting graphene sheets and Langmuir- Blodgett films. Nature Nanotechnology 3(9): 538-542.

Liu, J., Liu, L., Wu, X., Zhang, X. & Li, T. 2015. Environmentally friendly synthesis of graphene-silver composites with surface-enhanced Raman scattering and antibacterial activity via reduction with l-ascorbic acid/water vapor. New Journal of Chemistry 39(7): 5272-5281.

Norhakim, N., Ahmad, S.H., Chia, C.H. & Huang, N.M. 2014. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana43(4): 603-609.

Paramelle, D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J. & Fernig, D.G. 2014. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139(19): 4855-4861.

Pumera, M. 2010. Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews 39(11): 4146- 4157.

Sahu, S.R., Devi, M.M., Mukherjee, P., Sen, P. & Biswas, K. 2013. Optical property characterization of novel graphene-X (X=Ag, Au and Cu) nanoparticle hybrids. Journal of Nanomaterials 2013: Article ID. 232409.

Vollhardt, P. & Schore, N.E. 2009. Organic Chemistry: Structure and Function. 6th ed. New York: W.H. Freeman.

Wiberg, K.B. & Saegebarth, K.A. 1957. The mechanisms of permanganate oxidation. IV. hydroxylation of olefins and related reactions. Journal of American Chemical Society 79(11): 2822-2824.

Xu, B., Xu, C., Shi, X., Ji, A., Shi, L., Zhou, C. & Cui, Y. 2015. Fabrication and characteristics of reduced graphene oxide produced with different green reductants. Plos One 10(12): e0144842.

Zacharia, R., Ulbricht, H. & Hertel, T. 2004. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B 69(15): 155406.

Zhang, Y., Liu, S., Wang, L., Qin, X., Tian, J., Lu, W., Chang, G. & Sun, X. 2012. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Advances 2(2): 538-545.

Zhou, Y., Yang, J., Cheng, X., Zhao, N., Sun, H. & Li, D. 2013. Transparent and conductive reduced graphene oxide/silver nanoparticles multilayer film obtained by electrical self-assembly process with graphene oxide sheets and silver colloid. RSC Advances 3(10): 3391.

 

 

*Corresponding author; email: abdmanaf@utm.my

 

 

 

previous