Sains Malaysiana 46(7)(2017): 1083–1088
http://dx.doi.org/10.17576/jsm-2017-4607-10
One-Pot Green Synthesis of Highly
Reduced Graphene Oxide Decorated with Silver Nanoparticles
(Sintesis Mesra Alam Satu
Pot oleh Grafin
Oksida Terkurang Tinggi yang
Dihiaskan dengan Zarah Nano Argentum)
NUR SUHAILI ABD AZIZ, MUHAMMAD KHAIRULLAH NOR AZMI
& ABDUL MANAF HASHIM*
Malaysia-Japan
International Institute of Technology, Universiti Teknologi Malaysia,
Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia
Received: 26
December 2016/Accepted: 27 January 2017
ABSTRACT
A one-pot green sonochemical process assisted by ascorbic acid as the
reducing agent to produce highly reduced graphene oxide (rGO)
decorated with silver nanoparticles (AgNPs) is
demonstrated. A complete removal of oxygen-containing group in the GO sheets
was confirmed by no observation of the peak corresponds to C-O, C=O and -OH
bond. The unexpected decrease of peak intensity corresponds to sp2 hybridized
C=C group is explained by a so-called bond polarity effect. The peak observed
at ~400 nm seems to show the presence of AgNPs and
the red shifting of C=C peak to ~270 nm after the introduction of ascorbic acid
indicates the formation of highly reduced GO.
The increase of AgNPs size and the crumpled silk-like
morphology after the introduction of ascorbic acid also indicate the aggressive
reduction of both AgNPs and GO.
The increase of ID/IG ratio
after the introduction of ascorbic acid seems to indicate the increase of the
number of small sp2 domains,
the presence of unrepaired defects and the restoration of the sp2 network.
This work provides the promising green sonochemical approach by utilizing non-toxic and environmental-friendly reducing agent to
produce highly reduced GO decorated with AgNPs for various applications.
Keywords: Reduced graphene
oxide; silver nanoparticle; sonochemical method
ABSTRAK
Proses sonokimia
satu pot mesra
alam yang dibantu oleh asid askorbik
sebagai agen
menurunan telah didemonstrasi untuk menghasilkan grafin oksida (rGO) terkurang
tinggi yang dihiaskan dengan zarah nano
argentum (AgNPs). Pembuangan
yang lengkap bagi
kumpulan yang mempunyai oksigen pada lembaran
GO
disahkan oleh
tiadanya puncak
kepunyaan C-O, C=O dan ikatan –OH. Pengurangan
keamatan puncak yang mengejutkan pada kumpulan C=C sp2 terhibrid
dapat diterangkan oleh yang dipanggil kesan polariti ikatan. Puncak yang dilihat pada ~400 nm membuktikan kehadiran AgNPs dan peralihan ke
kanan oleh
puncak C=C pada ~270 nm selepas pengenalan kepada asid askorbik
menunjukkan GO telah
terturun dengan
tinggi. Peningkatan saiz AgNPs dan
morfologi seperti
sutera renyuk selepas
pengenalan kepada
asid askorbik juga menunjukkan penurunan yang agresif pada kedua
AgNPs dan
GO.
Peningkatan
nisbah ID/IG
selepas pengenalan kepada asid asorbik
kelihatan menunjukkan
peningkatan domain sp2
yang kecil dengan
kehadiran kecacatan yang tidak dibaiki dan
pemulihan rangkaian
sp2.
Kertas ini
memberikan pendekatan sonokimia yang mesra alam dengan pendekatan
menggunakan agen
pengurangan yang tidak toksik dan mesra
alam sekitar
untuk menghasilkan pengurangan GO yang tinggi
dihiasi dengan
AgNPs untuk pelbagai
aplikasi.
Kata kunci: Kaedah sonokimia; penurunan grafin oksida; zarah nano argentum
REFERENCES
Abulizi,
A., Okitsu, K. & Zhu, J-J. 2014.
Ultrasound assisted reduction of graphene oxide to graphene in l-ascorbic acid
aqueous solutions: Kinetics and effects of various factors on the rate of
graphene formation. Ultrasonics Sonochemistry21(3): 1174-1181.
Cui, S., Mao,
S., Wen, Z., Chang, J., Zhang, Y. & Chen, J. 2013. Controllable synthesis
of silver nanoparticle-decorated reduced graphene oxide hybrids for ammonia
detection. Analyst 138(10): 2877-2882.
Dinh, D.A., Hui,
K.S., Hui, K.N., Cho, Y.R., Zhou, W., Hong, X. & Chun, H-H. 2014. Green
synthesis of high conductivity silver nanoparticle-reduced graphene oxide
composite films. Applied Surface Science 298: 62-67.
Feng, H., Cheng,
R., Zhao, X., Duan, X. & Li, J. 2013. A
low-temperature method to produce highly reduced graphene oxide. Nature
Communications 4: 1539. DOI: 10.1038/ ncomms2555.
Gao, J., Liu, F.,
Liu, Y., Ma, N., Wang, Z. & Zhang, X. 2010a. Environment-friendly
method to produce graphene that employs vitamin C and amino acid. Chemistry
of Materials 22(7): 2213-2218.
Gao, X., Jang, J.
& Nagase, S. 2010b. Hydrazine and thermal reduction of graphene oxide:
reaction mechanisms, product structures, and reaction design. Journal of
Physical Chemistry C 114(2): 832-842.
Garcia-Bosch,
I., Ribas, X. & Costas, M. 2009. A broad substrate-scope method for fast, efficient and selective
hydrogen peroxide-epoxidation. Advanced Synthesis & Catalysis 351(3):
348-352.
Golsheikh, A.M., Huang,
N.M., Lim, H.N. & Zakaria, R. 2014. One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver
nanoparticles for non-enzymatic detection of H2O2 and optical detection of
mercury ions. RSC Advances 4(69): 36401-36411.
He,
D., Shen, L., Zhang, X., Wang, Y., Bao, N. &
Kung, H.H. 2014. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions. AIChE Journal 60(8): 2757-2764.
Huang, N.M.
2011. Simple room-temperature preparation of high-yield
large-area graphene oxide. International Journal of Nanomedicine 6:
3443-3448.
Huang,
Y., Liu, P. & Wang, L.E.I. 2013. Production of stable dispersions of
reduced graphene oxide using indole as a reduction agent. Nano 08(02):
1350017.
Li,
X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E. & Dai, H. 2008. Highly conducting graphene sheets and Langmuir- Blodgett films. Nature Nanotechnology 3(9): 538-542.
Liu,
J., Liu, L., Wu, X., Zhang, X. & Li, T. 2015. Environmentally friendly synthesis of graphene-silver composites
with surface-enhanced Raman scattering and antibacterial activity via reduction
with l-ascorbic acid/water vapor. New Journal of Chemistry 39(7):
5272-5281.
Norhakim,
N., Ahmad, S.H., Chia, C.H. & Huang, N.M. 2014. Mechanical and
thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana43(4):
603-609.
Paramelle,
D., Sadovoy, A., Gorelik, S., Free, P., Hobley, J. & Fernig, D.G.
2014. A rapid method to estimate the concentration of citrate capped silver
nanoparticles from UV-visible light spectra. Analyst 139(19): 4855-4861.
Pumera, M. 2010. Graphene-based nanomaterials and their electrochemistry. Chemical
Society Reviews 39(11): 4146- 4157.
Sahu, S.R., Devi,
M.M., Mukherjee, P., Sen, P. & Biswas, K. 2013. Optical property
characterization of novel graphene-X (X=Ag, Au and Cu) nanoparticle hybrids. Journal
of Nanomaterials 2013: Article ID. 232409.
Vollhardt, P. & Schore, N.E. 2009. Organic Chemistry: Structure and Function. 6th ed.
New York: W.H. Freeman.
Wiberg,
K.B. & Saegebarth, K.A. 1957. The mechanisms of permanganate oxidation. IV. hydroxylation of olefins and related reactions. Journal
of American Chemical Society 79(11): 2822-2824.
Xu,
B., Xu, C., Shi, X., Ji, A., Shi, L., Zhou, C. & Cui, Y. 2015. Fabrication and
characteristics of reduced graphene oxide produced with different green
reductants. Plos One 10(12): e0144842.
Zacharia,
R., Ulbricht, H. & Hertel, T. 2004. Interlayer
cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B 69(15): 155406.
Zhang, Y., Liu,
S., Wang, L., Qin, X., Tian, J., Lu, W., Chang, G. & Sun, X. 2012. One-pot green synthesis of Ag nanoparticles-graphene nanocomposites
and their applications in SERS, H2O2, and glucose
sensing. RSC Advances 2(2): 538-545.
Zhou,
Y., Yang, J., Cheng, X., Zhao, N., Sun, H. & Li, D. 2013. Transparent and
conductive reduced graphene oxide/silver nanoparticles multilayer film obtained
by electrical self-assembly process with graphene oxide sheets and silver
colloid. RSC Advances 3(10): 3391.
*Corresponding author; email: abdmanaf@utm.my