Sains Malaysiana 46(7)(2017): 1097–1102
                  
                
                    http://dx.doi.org/10.17576/jsm-2017-4607-12 
                        
                
                   
                
                Comparative Study of Poly(4-vinylpyridine)
                  and Polylactic Acid-block-poly(2-vinylpyridine)
                  Nanocomposites on Structural, Morphological and Electrochemical Properties
  
                
                    (Kajian Perbandingan Nanokomposit 
                      Poli(4-vinilpiridine) dan Polilaktik Asid-blok-poli(2-vinilpiridine) 
                      ke 
                      atas Sifat 
                      Struktur, Morfologi dan Elektrokimia)  
                      
                
                   
                
                JIAJIA LONG1, AZLIN SUHAIDA AZMI1, MINSOO P. KIM2 & FATHILAH BINTI ALI1*
                  
                
                
                   
                
                1Department of Biotechnology
                  Engineering, Kulliyyah of Engineering, International
                  Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Federal Territory,
                  Malaysia
  
                
                
                   
                
                2Ulsan National Institute of
                  Science and Technology (UNIST), 50 UNIST-gil, Ulsan
                  44919
  
                
                South Korea
                  
                
                
                   
                
                Received: 26 December 2016/Accepted:
                  6 March 2017
                  
                
                
                   
                
                ABSTRACT
                  
                
                Polymer-based nanocomposites
                  have attracted a lot of attention for amperometric biosensor development due to their general physical and chemical properties
                  including biocompatibility, film-forming ability, stability and different
                  functional groups that can be bonded with other biomolecues.
                  In this study, poly-4-vinlyridine homopolymer (P4VP)
                  and polylactic acid-block-poly(2-vinylpyridine) block
                  copolymer (PLA-b-P2VP) were used to hybridize with gold precursors
                  (Au3+) based on the association
                  between the nitrogen of the pyridine group of P4VP or P2VP block with gold
                  precursors. P4VP/Au3+ and PLA-b-P2VP/Au3+ nanocomposites
                  were prepared with ratio of gold to P2VP or P4VP (10:1). The Au3+ in
                  both polymers was reduced to gold nanoparticles (AuNPs)
                  via in-situ approach by using hydrazine. Fourier transform infrared
                    spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis),
                    transmission electron microscopy (TEM) and cyclic voltammetry (CV)
                    were used to characterize the structural, morphological and electrochemical
                    properties of the nanocomposites. The peak currents of P4VP/AuNPs and PLA-b-P2VP/AuNPs nanocomposites
                    modified electrode were 6.685 nA and 69.432 nA, respectively, which are much lower
                    than bare electrode (205.019 nA) due to the
                    non-conductivity of P4VP and PLA-b-P2VP. In order to improve
                    the electron transfer capability of electrode, graphene oxide (GO)
                    was blended and electrochemically reduced to obtain P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites. After immobilization of these two
                    nanocomposites on electrode through drop casting method, the peak currents of
                    P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites modified
                    electrode were 871.172 nA and 663.947 nA, respectively, which are much higher
                    than bare electrode (205.019 nA) and shown good
                    capability to accelerate electron transfer. Based on these characterizations,
                    P4VP/AuNPs/rGO has
                    potential as the nanocomposite to modify the electrode for enzymatic biosensor
                    development.
  
                
                   
                
                Keywords: Block copolymers;
                  cyclic voltammetry; enzyme biosensor; graphene; Poly-4-vinlyridine
                  
                
                
                   
                
                ABSTRAK
                  
                
                    Nanokomposit polimer bagi pembangunan 
                      biosensor amperometrik menarik 
                      banyak perhatian 
                      kerana sifat fizikal 
                      dan kimia 
                      am mereka termasuk keserasian-bio, keupayaan pembentukan filem, kestabilan dan bergantung kepada kumpulan berfungsi yang berkemampuan untuk terikat dengan biomolekul lain. Dalam kajian ini, poli-4-vinilpiridin 
                      (P4VP) dan polilaktik 
                      asid-blok-poly (2-vinilpiridin) 
                      (PLA-b-P2VP) 
                      telah digunakan 
                      untuk dihibridkan dengan prekursor emas berdasarkan gabungan antara nitrogen kumpulan piridin daripada P4VP atau P2VP blok dengan prekursor 
                      emas 
                      (Au3+). 
                      Nanokomposit P4VP/Au3+ dan PLA-b-P2VP/Au3+ 
                      telah disediakan dengan nisbah emas 
                      kepada P2VP atau 
                      P4VP (10:1). P4VP/AuNPs 
                      dan PLA-b-P2VP/AuNPs 
                      nanokomposit telah 
                      disediakan melalui pendekatan in-situ dengan menggunakan hidrazin. Spektroskopi 
                      transformasi Fourier inframerah 
                      (FTIR), 
                      spektroskopi ultraviolet boleh 
                      dilihat (UV-vis), mikroskop 
                      elektron penghantaraan 
                      (TEM) 
                      dan voltammetri 
                      berkitar (CV) telah 
                      digunakan untuk 
                      mencirikan sifat struktur, morfologi dan elektrokimia nanokomposit tersebut. Arus puncak untuk 
                      bahan P4VP/AuNPs 
                      dan PLA-b-P2VP/AuNPs 
                      pengubah suai 
                      elektrod adalah 6.685 nA dan 
                      69.432 nA, yang jauh 
                      lebih rendah daripada 
                      nilai elektrod 
                      (205.019 nA) disebabkan sifat tidak kekonduksian 
                      daripada P4VP dan 
                      PLA-b-P2VP. 
                      Dalam usaha 
                      untuk meningkatkan keupayaan pemindahan elektron elektrod, grafin oksida (GO) 
                      telah dicampurkan dan diperoleh dengan 
                      kaedah elektrokimia 
                      bagi penyediaan P4VP/AuNPs/rGO dan 
                      nanokomposit PLA-b-P2VP/AuNPs/rGO. Selepas proses immobilasi oleh bahan nanokomposit pada elektrod melalui 
                      teknik saliran 
                      titisan dengan puncak elektrod arus untuk P4VP/AuNPs/rGO dan 
                      PLA-b-P2VP/AuNPs/rGO nanokomposit 
                      masing-masing diubah 
                      suai menunjukkan nilai 871.172 nA 
                      dan 663.947 nA. 
                      Nilai tersebut jauh lebih tinggi 
                      daripada permukaan 
                      elektrod (205.019 nA) 
                      serta menunjukkan 
                      kemampuan yang baik untuk mempercepatkan pemindahan elektron. Berdasarkan 
                      pencirian ini, P4VP/AuNPs/rGO mempunyai 
                      potensi sebagai 
                      komposit nano untuk 
                      mengubah suai 
                      elektrod bagi pembangunan 
                      enzim biosensor.  
                      
                
                   
                
                Kata kunci: Blok kopolimer; enzim biosensor; grafin;
                  poli-4-viniliridine; voltammetri berkitar
  
                
                REFERENCES
                  
                
                Chiu, J.J., Kim, B.J., Kramer, E.J. & Pine, D.J. 2005. Control of nanoparticle location in block copolymers. Journal
                  of the American Chemical Society 127(14): 5036-5037.
  
                
                Dreyer,
                  D.R., Park, S., Bielawski, C.W. & Ruoff, R.S. 2010. The chemistry of
                    graphene oxide. Chemical Society Reviews 39(1): 228-240.
  
                
                Johan, Mohd Rafie, Chong, L.C. & Hamizi, N.A. 2012. Preparation
                  and stabilization of monodisperse colloidal gold by reduction with monosodium
                  glutamate and poly (methyl methacrylate). Int. J. Electrochem.
                    Sci. 7: 4567-4573.
  
                
                Kim, M.P. & Yi, G-R. 2015. Nanostructured
                  colloidal particles by confined self-assembly of block copolymers in
                  evaporative droplets. Frontiers in Materials 2: 45.
  
                
                Ku, K.H., Shin, J.M., Kim, M.P., Lee, C-H., Seo,
                  M-K., Yi, G-R., Jang, S.G. & Kim, B.J. 2014. Size-controlled nanoparticle-guided assembly of block copolymers
                    for convex lens-shaped particles. Journal of the American Chemical
                      Society 136(28): 9982-9989.
  
                Li, D., He, Q. & Li, J. 2009. Smart core/shell nanocomposites: Intelligent polymers modified gold
                  nanoparticles. Advances in Colloid and Interface Science 149(1): 28-38.
  
                
                Li,
                  D., He, Q., Yang, Y., Helmuth, M. & Li, J. 2008. Two-stage pH response of
                  poly (4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41(19):
                  7254-7256.
  
                
                Li, D., He, Q., Cui, Y. & Li, J. 2007. Fabrication of pH-responsive nanocomposites of gold
                  nanoparticles/poly (4-vinylpyridine). Chemistry of Materials 19(3):
                  412-417.
  
                
                Lin, T., Li, C-L., Ho, R-M. & Ho, J-C. 2010.
                  Association strength of metal ions with poly (4-vinylpyridine) in inorganic/
                  poly (4-vinylpyridine)-b-poly (ε-caprolactone)
                  hybrids. Macromolecules 43(7): 3383-3391.
  
                
                Sasha Md Nasir & Hadi Nur. 2008. Gold nanoparticles embedded on the surface of polyvinyl alcohol layer. Journal
                  of Fundamental Sciences 4: 245-252.
  
                
                Özyalçin, M., Küçükyavuz,
                  Z., Jarvaherian, A. & Küçükyavuz,
                  S. 1997. Electrical conductivity of sodium doped poly (4-vinylpyridine). Turkish
                    Journal of Chemistry 21(4): 296-299.
  
                
                Pei, S. & Cheng, H-M. 2012. The reduction
                  of graphene oxide. Carbon 50(9): 3210-3228.
  
                
                Pumera, M. 2011. Graphene in biosensing. Materials Today 14(7):
                  308-315.
                  
                
                Putzbach, W.
  & Ronkainen, N.J. 2013. Immobilization techniques in the fabrication of nanomaterial-based
    electrochemical biosensors: A review. Sensors 13(4): 4811-4840.
  
                Sarkar, S., Guibal, E., Quignard, F. & SenGupta, A.K.
                  2012. Polymer-supported metals and metal oxide nanoparticles:
                    Synthesis, characterization, and applications. Journal of Nanoparticle
                      Research 14(2): 1-24.
  
                Smart,
                  T., Lomas, H., Massignani, M., Flores-Merino, M.V.,
                  Perez, L.R. & Battaglia, G. 2008. Block copolymer
                  nanostructures. Nano Today 3(3): 38-46.
  
                
                Unnikrishnan,
                  B., Palanisamy, S. & Chen, S-M. 2013. A simple
                    electrochemical approach to fabricate a glucose biosensor
  
                based on graphene-glucose oxidase biocomposite. Biosensors and Bioelectronics 39(1):
                  70-75.
                  
                
                Wang, X. & Uchiyama, S. 2013. Polymers for Biosensors Construction: INTECH Open Access Publisher.
                  
                
                Yuen, C.W.M.,
                  Ku, S.K.A., Choi, P.S.R., Kan, C.W. & Tsang, S.Y.
                  2005. Determining functional groups of commercially available ink-jet
                    printing reactive dyes using infrared spectroscopy. Research Journal
                      of Textile and Apparel 9(2): 26-38.
  
                
                   
                
                
                   
                
                *Corresponding
                  author; email: fathilah@iium.edu.my