Sains Malaysiana 46(7)(2017): 1097–1102

http://dx.doi.org/10.17576/jsm-2017-4607-12

 

Comparative Study of Poly(4-vinylpyridine) and Polylactic Acid-block-poly(2-vinylpyridine) Nanocomposites on Structural, Morphological and Electrochemical Properties

(Kajian Perbandingan Nanokomposit Poli(4-vinilpiridine) dan Polilaktik Asid-blok-poli(2-vinilpiridine) ke atas Sifat Struktur, Morfologi dan Elektrokimia)

 

JIAJIA LONG1, AZLIN SUHAIDA AZMI1, MINSOO P. KIM2 & FATHILAH BINTI ALI1*

 

1Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Federal Territory, Malaysia

 

2Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919

South Korea

 

Received: 26 December 2016/Accepted: 6 March 2017

 

ABSTRACT

Polymer-based nanocomposites have attracted a lot of attention for amperometric biosensor development due to their general physical and chemical properties including biocompatibility, film-forming ability, stability and different functional groups that can be bonded with other biomolecues. In this study, poly-4-vinlyridine homopolymer (P4VP) and polylactic acid-block-poly(2-vinylpyridine) block copolymer (PLA-b-P2VP) were used to hybridize with gold precursors (Au3+) based on the association between the nitrogen of the pyridine group of P4VP or P2VP block with gold precursors. P4VP/Au3+ and PLA-b-P2VP/Au3+ nanocomposites were prepared with ratio of gold to P2VP or P4VP (10:1). The Au3+ in both polymers was reduced to gold nanoparticles (AuNPs) via in-situ approach by using hydrazine. Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM) and cyclic voltammetry (CV) were used to characterize the structural, morphological and electrochemical properties of the nanocomposites. The peak currents of P4VP/AuNPs and PLA-b-P2VP/AuNPs nanocomposites modified electrode were 6.685 nA and 69.432 nA, respectively, which are much lower than bare electrode (205.019 nA) due to the non-conductivity of P4VP and PLA-b-P2VP. In order to improve the electron transfer capability of electrode, graphene oxide (GO) was blended and electrochemically reduced to obtain P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites. After immobilization of these two nanocomposites on electrode through drop casting method, the peak currents of P4VP/AuNPs/rGO and PLA-b-P2VP/AuNPs/rGO nanocomposites modified electrode were 871.172 nA and 663.947 nA, respectively, which are much higher than bare electrode (205.019 nA) and shown good capability to accelerate electron transfer. Based on these characterizations, P4VP/AuNPs/rGO has potential as the nanocomposite to modify the electrode for enzymatic biosensor development.

 

Keywords: Block copolymers; cyclic voltammetry; enzyme biosensor; graphene; Poly-4-vinlyridine

 

ABSTRAK

Nanokomposit polimer bagi pembangunan biosensor amperometrik menarik banyak perhatian kerana sifat fizikal dan kimia am mereka termasuk keserasian-bio, keupayaan pembentukan filem, kestabilan dan bergantung kepada kumpulan berfungsi yang berkemampuan untuk terikat dengan biomolekul lain. Dalam kajian ini, poli-4-vinilpiridin (P4VP) dan polilaktik asid-blok-poly (2-vinilpiridin) (PLA-b-P2VP) telah digunakan untuk dihibridkan dengan prekursor emas berdasarkan gabungan antara nitrogen kumpulan piridin daripada P4VP atau P2VP blok dengan prekursor emas (Au3+). Nanokomposit P4VP/Au3+ dan PLA-b-P2VP/Au3+ telah disediakan dengan nisbah emas kepada P2VP atau P4VP (10:1). P4VP/AuNPs dan PLA-b-P2VP/AuNPs nanokomposit telah disediakan melalui pendekatan in-situ dengan menggunakan hidrazin. Spektroskopi transformasi Fourier inframerah (FTIR), spektroskopi ultraviolet boleh dilihat (UV-vis), mikroskop elektron penghantaraan (TEM) dan voltammetri berkitar (CV) telah digunakan untuk mencirikan sifat struktur, morfologi dan elektrokimia nanokomposit tersebut. Arus puncak untuk bahan P4VP/AuNPs dan PLA-b-P2VP/AuNPs pengubah suai elektrod adalah 6.685 nA dan 69.432 nA, yang jauh lebih rendah daripada nilai elektrod (205.019 nA) disebabkan sifat tidak kekonduksian daripada P4VP dan PLA-b-P2VP. Dalam usaha untuk meningkatkan keupayaan pemindahan elektron elektrod, grafin oksida (GO) telah dicampurkan dan diperoleh dengan kaedah elektrokimia bagi penyediaan P4VP/AuNPs/rGO dan nanokomposit PLA-b-P2VP/AuNPs/rGO. Selepas proses immobilasi oleh bahan nanokomposit pada elektrod melalui teknik saliran titisan dengan puncak elektrod arus untuk P4VP/AuNPs/rGO dan PLA-b-P2VP/AuNPs/rGO nanokomposit masing-masing diubah suai menunjukkan nilai 871.172 nA dan 663.947 nA. Nilai tersebut jauh lebih tinggi daripada permukaan elektrod (205.019 nA) serta menunjukkan kemampuan yang baik untuk mempercepatkan pemindahan elektron. Berdasarkan pencirian ini, P4VP/AuNPs/rGO mempunyai potensi sebagai komposit nano untuk mengubah suai elektrod bagi pembangunan enzim biosensor.

 

Kata kunci: Blok kopolimer; enzim biosensor; grafin; poli-4-viniliridine; voltammetri berkitar

REFERENCES

Chiu, J.J., Kim, B.J., Kramer, E.J. & Pine, D.J. 2005. Control of nanoparticle location in block copolymers. Journal of the American Chemical Society 127(14): 5036-5037.

Dreyer, D.R., Park, S., Bielawski, C.W. & Ruoff, R.S. 2010. The chemistry of graphene oxide. Chemical Society Reviews 39(1): 228-240.

Johan, Mohd Rafie, Chong, L.C. & Hamizi, N.A. 2012. Preparation and stabilization of monodisperse colloidal gold by reduction with monosodium glutamate and poly (methyl methacrylate). Int. J. Electrochem. Sci. 7: 4567-4573.

Kim, M.P. & Yi, G-R. 2015. Nanostructured colloidal particles by confined self-assembly of block copolymers in evaporative droplets. Frontiers in Materials 2: 45.

Ku, K.H., Shin, J.M., Kim, M.P., Lee, C-H., Seo, M-K., Yi, G-R., Jang, S.G. & Kim, B.J. 2014. Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. Journal of the American Chemical Society 136(28): 9982-9989.

Li, D., He, Q. & Li, J. 2009. Smart core/shell nanocomposites: Intelligent polymers modified gold nanoparticles. Advances in Colloid and Interface Science 149(1): 28-38.

Li, D., He, Q., Yang, Y., Helmuth, M. & Li, J. 2008. Two-stage pH response of poly (4-vinylpyridine) grafted gold nanoparticles. Macromolecules 41(19): 7254-7256.

Li, D., He, Q., Cui, Y. & Li, J. 2007. Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly (4-vinylpyridine). Chemistry of Materials 19(3): 412-417.

Lin, T., Li, C-L., Ho, R-M. & Ho, J-C. 2010. Association strength of metal ions with poly (4-vinylpyridine) in inorganic/ poly (4-vinylpyridine)-b-poly (ε-caprolactone) hybrids. Macromolecules 43(7): 3383-3391.

Sasha Md Nasir & Hadi Nur. 2008. Gold nanoparticles embedded on the surface of polyvinyl alcohol layer. Journal of Fundamental Sciences 4: 245-252.

Özyalçin, M., Küçükyavuz, Z., Jarvaherian, A. & Küçükyavuz, S. 1997. Electrical conductivity of sodium doped poly (4-vinylpyridine). Turkish Journal of Chemistry 21(4): 296-299.

Pei, S. & Cheng, H-M. 2012. The reduction of graphene oxide. Carbon 50(9): 3210-3228.

Pumera, M. 2011. Graphene in biosensing. Materials Today 14(7): 308-315.

Putzbach, W. & Ronkainen, N.J. 2013. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 13(4): 4811-4840.

Sarkar, S., Guibal, E., Quignard, F. & SenGupta, A.K. 2012. Polymer-supported metals and metal oxide nanoparticles: Synthesis, characterization, and applications. Journal of Nanoparticle Research 14(2): 1-24.

Smart, T., Lomas, H., Massignani, M., Flores-Merino, M.V., Perez, L.R. & Battaglia, G. 2008. Block copolymer nanostructures. Nano Today 3(3): 38-46.

Unnikrishnan, B., Palanisamy, S. & Chen, S-M. 2013. A simple electrochemical approach to fabricate a glucose biosensor

based on graphene-glucose oxidase biocomposite. Biosensors and Bioelectronics 39(1): 70-75.

Wang, X. & Uchiyama, S. 2013. Polymers for Biosensors Construction: INTECH Open Access Publisher.

Yuen, C.W.M., Ku, S.K.A., Choi, P.S.R., Kan, C.W. & Tsang, S.Y. 2005. Determining functional groups of commercially available ink-jet printing reactive dyes using infrared spectroscopy. Research Journal of Textile and Apparel 9(2): 26-38.

 

 

*Corresponding author; email: fathilah@iium.edu.my

 

 

 

 

previous