Sains Malaysiana 46(7)(2017): 1111–1117
http://dx.doi.org/10.17576/jsm-2017-4607-14
Graphene Growth at Low Temperatures using
RF-Plasma Enhanced Chemical Vapour Deposition
(Pertumbuhan Grafin pada Suhu Rendah menggunakan
Pemendapan Wap Kimia secara Peningkatan RF-Plasma)
AISHAH KHALID, MOHD AMBRI MOHAMED*
& AKRAJAS ALI UMAR
Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 26 December 2016/Accepted:
22 February 2017
ABSTRACT
The advantage of plasma
enhanced chemical vapor deposition (PECVD) method is the ability to
deposit thin films at relatively low temperature. Plasma power supports the
growth process by decomposing hydrocarbon to carbon radicals which will be
deposited later on metal catalyst. In this work, we have successfully synthesis
graphene on Ni and Co films at relatively low temperature and optimize the
synthesis conditions by adjusting the plasma power. Low temperature growth of
graphene was optimized at 600°C after comparing the quality of as-grown
graphene at several temperatures from 400 to 800°C and by varying plasma powers
in the range of 20 - 100 W. Raman analysis of the as-grown samples showed that
graphene prefers lower plasma power of 40 W. The annihilation of graphene
formation at higher plasma powers is attributed to the presence of high
concentration of hydrogen radical from methane which recombines with carbon
elements on thin film surface. The optimum graphene growth conditions were obtained
at growth temperature of 600°C, plasma power of 40 W and growth time of 10 min
with methane flow rate of 120 sccm.
Keywords: Graphene growth;
low temperature; PECVD; plasma
ABSTRAK
Kelebihan kaedah pemendapan wap kimia secara peningkatan plasma (PECVD)
adalah keupayaan untuk endapan filem pada
suhu yang rendah. Kuasa
plasma menyokong proses pertumbuhan
dengan menguraikan
hidrokarbon kepada unsur karbon
aktif dan
kemudian diserap oleh logam
pemangkin. Dalam kajian ini,
kami telah berjaya
mensintesis grafin di atas filem Ni and Co pada suhu rendah
dan mengoptimumkan
keadaan sintesis dengan mengubah kuasa plasma. Suhu
pertumbuhan rendah diperoleh pada 600°C
setelah membandingkan
kualiti grafin yang terhasil pada beberapa
suhu lain daripada
400 kepada 800°C dengan
mengubah kuasa plasma dalam lingkungan 20-100 W.
Analisis Raman menunjukkan
bahawa pertumbuhan grafin memerlukan kuasa plasma yang rendah iaitu 40 W. Penghapusan pembentukan grafin pada kuasa plasma yang lebih tinggi adalah
disebabkan oleh
kehadiran unsur aktif hidrogen yang berkepekatan tinggi daripada metana yang bergabung dengan unsur karbon pada
permukaan filem
nipis. Keadaan pertumbuhan grafin yang optimum
diperoleh pada suhu pertumbuhan 600°C,
kuasa plasma 40 W dan masa
pertumbuhan 10 min dengan
kadar aliran metana
120 sccm.
Kata kunci: Pertumbuhan grafin; PECVD; plasma; suhu rendah
REFERENCES
Araujo, P.T., Terrones, M. & Dresselhaus,
M.S. 2012. Defects and impurities in graphene-like materials. Materials
Today 15(3): 98-109.
Choi, W. &
Lee, J.W. 2012. Graphene Synthesis and Applications. Boca
Raton: CRC Press.
Dathbun, A. & Chaisitsak,
S. 2013. Effects of three parameters on graphene synthesis by
chemical vapor deposition. 8th IEEE International
Conference on Nano/Micro Engineered and Molecular Systems (NEMS).
El-Kady, M.F. & Kaner, R.B.
2013. Scalable fabrication of high-power graphene micro-supercapacitors
for flexible and on-chip energy storage. Nature Communications 4:
1475.
Ferrari, A.C.,
Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec,
S., Jiang, D., Novoselov, K.S., Roth, S. & Geim, A.K. 2006. Raman spectrum of graphene and
graphene layers. Physical Review Letters 97: 187401. DOI:
10.1103/PhysRevLett.97.187401
Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nat.
Mater. 6(3): 183-191.
Jeong, H.K., Castro,
E.J.D., Yong, G.H. & Lee, C.H. 2011. Synthesis of few-layer graphene on a Ni substrate
by using DC plasma enhanced chemical vapor deposition (PE-CVD). Journal of
the Korean Physical Society 58(1): 53.
Jin, Y., Hu, B.,
Wei, Z., Luo, Z., Wei, D., Xi, Y., Zhang, Y. & Liu, Y. 2014. Roles of H2 in
annealing and growth times of graphene CVD synthesis over copper foil. Journal
of Materials Chemistry A2(38): 16208-16216.
Juang, Z.Y., Wu,
C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C. & Tsai, C.H. 2009. Synthesis of
graphene on silicon carbide substrates at low temperature. Carbon 47(8):
2026-2031.
Kim, E., An,
H., Jang, H., Cho, W.J., Lee, N., Lee, W.G. & Jung, J. 2011. Growth of few-layer graphene on a thin cobalt film on a Si/SiO2
substrate. Chemical Vapor Deposition 17(1-3): 9-14.
Kim, Y.S., Lee, J.H., Kim, Y.D., Jerng, S.K., Joo, K., Kim, E.,
Jung, J., Yoon, E., Park, Y.D., Seo, S. & Chun,
S.H. 2013. Methane as an effective hydrogen source for single-layer graphene
synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale 5(3): 1221-1226.
Koybasi, O., Childres, I., Jovanovic, I. &
Chen, Y.P. 2012. Graphene field effect transistor as a radiation and photodetector. Proc. SPIE 8373, Micro- and Nanotechnology Sensors,
Systems, and Applications IV, 83730H. DOI: 10.1117/12.919628.
Kuila, T., Bose, S.,
Mishra, A.K., Khanra, P., Kim, N.H. & Lee, J.H.
2012. Chemical functionalization of graphene and its applications. Progress in Materials Science 57(7): 1061-1105.
Lee, S., Lee,
K. & Zhong, Z. 2010. Wafer scale homogeneous bilayer
graphene films by chemical vapor deposition. Nano Letters 10(11):
4702-4707.
Noorhafanita Norhakim, Sahrim Hj. Ahmad, Chin Hua Chia & Nay Ming Huang 2014. Mechanical and thermal
properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana43(4): 603-609.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang,
D., Zhang, Y., Dubonos, S.V., Grigorieva,
I.V. & Firsov, A.A. 2004. Electric field
effect in atomically thin carbon films. Science 306(5696):
666-669.
Ramón, M.E.,
Gupta, A., Corbet, C., Ferrer, D.A., Movva, H.C.P., Carpenter, G., Colombo, L., Bourianoff, G., Doczy, M., Akinwande, D., Tutuc, E. &
Banerjee, S.K. 2011. CMOS-compatible synthesis of large-area, high-mobility
graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5(9): 7198-7204.
Reinke, P. 2012. Synthesis
of Graphene. New
York: John Wiley & Sons.
Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H. &
Silva, S.R.P. 1996. Raman spectroscopy on amorphous carbon
films. Journal of Applied Physics 80(1): 440-447.
Shaharin Fadzli Abd Rahman, Mohamad Rusop Mahmood & Abdul Manaf Hashim. 2014. Growth of graphene on nickel using a natural carbon source by thermal
chemical vapor deposition. Sains Malaysiana43(8): 1205-1211.
Tuinstra, F. &
Koenig, J.L. 1970. Raman spectrum of graphite. The Journal of Chemical
Physics 53(3): 1126-1130.
Wang, S., Qiao, L., Zhao, C., Zhang, X., Chen, J., Tian, H., Zheng,
W. & Han, Z. 2013. A growth mechanism for graphene deposited on polycrystalline Co film by plasma
enhanced chemical vapor deposition. New Journal of Chemistry 37(5):
1616-1622.
*Corresponding author; email: ambri@ukm.edu.my