Sains Malaysiana 46(7)(2017): 1111–1117

http://dx.doi.org/10.17576/jsm-2017-4607-14

 

Graphene Growth at Low Temperatures using RF-Plasma Enhanced Chemical Vapour Deposition

(Pertumbuhan Grafin pada Suhu Rendah menggunakan Pemendapan Wap Kimia secara Peningkatan RF-Plasma)

 

AISHAH KHALID, MOHD AMBRI MOHAMED* & AKRAJAS ALI UMAR

 

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia,

43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 26 December 2016/Accepted: 22 February 2017

 

ABSTRACT

The advantage of plasma enhanced chemical vapor deposition (PECVD) method is the ability to deposit thin films at relatively low temperature. Plasma power supports the growth process by decomposing hydrocarbon to carbon radicals which will be deposited later on metal catalyst. In this work, we have successfully synthesis graphene on Ni and Co films at relatively low temperature and optimize the synthesis conditions by adjusting the plasma power. Low temperature growth of graphene was optimized at 600°C after comparing the quality of as-grown graphene at several temperatures from 400 to 800°C and by varying plasma powers in the range of 20 - 100 W. Raman analysis of the as-grown samples showed that graphene prefers lower plasma power of 40 W. The annihilation of graphene formation at higher plasma powers is attributed to the presence of high concentration of hydrogen radical from methane which recombines with carbon elements on thin film surface. The optimum graphene growth conditions were obtained at growth temperature of 600°C, plasma power of 40 W and growth time of 10 min with methane flow rate of 120 sccm.

 

Keywords: Graphene growth; low temperature; PECVD; plasma

 

ABSTRAK

Kelebihan kaedah pemendapan wap kimia secara peningkatan plasma (PECVD) adalah keupayaan untuk endapan filem pada suhu yang rendah. Kuasa plasma menyokong proses pertumbuhan dengan menguraikan hidrokarbon kepada unsur karbon aktif dan kemudian diserap oleh logam pemangkin. Dalam kajian ini, kami telah berjaya mensintesis grafin di atas filem Ni and Co pada suhu rendah dan mengoptimumkan keadaan sintesis dengan mengubah kuasa plasma. Suhu pertumbuhan rendah diperoleh pada 600°C setelah membandingkan kualiti grafin yang terhasil pada beberapa suhu lain daripada 400 kepada 800°C dengan mengubah kuasa plasma dalam lingkungan 20-100 W. Analisis Raman menunjukkan bahawa pertumbuhan grafin memerlukan kuasa plasma yang rendah iaitu 40 W. Penghapusan pembentukan grafin pada kuasa plasma yang lebih tinggi adalah disebabkan oleh kehadiran unsur aktif hidrogen yang berkepekatan tinggi daripada metana yang bergabung dengan unsur karbon pada permukaan filem nipis. Keadaan pertumbuhan grafin yang optimum diperoleh pada suhu pertumbuhan 600°C, kuasa plasma 40 W dan masa pertumbuhan 10 min dengan kadar aliran metana 120 sccm.

 

Kata kunci: Pertumbuhan grafin; PECVD; plasma; suhu rendah

REFERENCES

Araujo, P.T., Terrones, M. & Dresselhaus, M.S. 2012. Defects and impurities in graphene-like materials. Materials Today 15(3): 98-109.

Choi, W. & Lee, J.W. 2012. Graphene Synthesis and Applications. Boca Raton: CRC Press.

Dathbun, A. & Chaisitsak, S. 2013. Effects of three parameters on graphene synthesis by chemical vapor deposition. 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS).

El-Kady, M.F. & Kaner, R.B. 2013. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications 4: 1475.

Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S. & Geim, A.K. 2006. Raman spectrum of graphene and graphene layers. Physical Review Letters 97: 187401. DOI: 10.1103/PhysRevLett.97.187401

Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nat. Mater. 6(3): 183-191.

Jeong, H.K., Castro, E.J.D., Yong, G.H. & Lee, C.H. 2011. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD). Journal of the Korean Physical Society 58(1): 53.

Jin, Y., Hu, B., Wei, Z., Luo, Z., Wei, D., Xi, Y., Zhang, Y. & Liu, Y. 2014. Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil. Journal of Materials Chemistry A2(38): 16208-16216.

Juang, Z.Y., Wu, C.Y., Lo, C.W., Chen, W.Y., Huang, C.F., Hwang, J.C., Chen, F.R., Leou, K.C. & Tsai, C.H. 2009. Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47(8): 2026-2031.

Kim, E., An, H., Jang, H., Cho, W.J., Lee, N., Lee, W.G. & Jung, J. 2011. Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate. Chemical Vapor Deposition 17(1-3): 9-14.

Kim, Y.S., Lee, J.H., Kim, Y.D., Jerng, S.K., Joo, K., Kim, E., Jung, J., Yoon, E., Park, Y.D., Seo, S. & Chun, S.H. 2013. Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale 5(3): 1221-1226.

Koybasi, O., Childres, I., Jovanovic, I. & Chen, Y.P. 2012. Graphene field effect transistor as a radiation and photodetector. Proc. SPIE 8373, Micro- and Nanotechnology Sensors, Systems, and Applications IV, 83730H. DOI: 10.1117/12.919628.

Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. & Lee, J.H. 2012. Chemical functionalization of graphene and its applications. Progress in Materials Science 57(7): 1061-1105.

Lee, S., Lee, K. & Zhong, Z. 2010. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Letters 10(11): 4702-4707.

Noorhafanita Norhakim, Sahrim Hj. Ahmad, Chin Hua Chia & Nay Ming Huang 2014. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites. Sains Malaysiana43(4): 603-609.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669.

Ramón, M.E., Gupta, A., Corbet, C., Ferrer, D.A., Movva, H.C.P., Carpenter, G., Colombo, L., Bourianoff, G., Doczy, M., Akinwande, D., Tutuc, E. & Banerjee, S.K. 2011. CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5(9): 7198-7204.

Reinke, P. 2012. Synthesis of Graphene. New York: John Wiley & Sons.

Schwan, J., Ulrich, S., Batori, V., Ehrhardt, H. & Silva, S.R.P. 1996. Raman spectroscopy on amorphous carbon films. Journal of Applied Physics 80(1): 440-447.

Shaharin Fadzli Abd Rahman, Mohamad Rusop Mahmood & Abdul Manaf Hashim. 2014. Growth of graphene on nickel using a natural carbon source by thermal chemical vapor deposition. Sains Malaysiana43(8): 1205-1211.

Tuinstra, F. & Koenig, J.L. 1970. Raman spectrum of graphite. The Journal of Chemical Physics 53(3): 1126-1130.

Wang, S., Qiao, L., Zhao, C., Zhang, X., Chen, J., Tian, H., Zheng, W. & Han, Z. 2013. A growth mechanism for graphene deposited on polycrystalline Co film by plasma enhanced chemical vapor deposition. New Journal of Chemistry 37(5): 1616-1622.

 

 

*Corresponding author; email: ambri@ukm.edu.my

 

 

previous