Sains Malaysiana 46(7)(2017): 1119–1124

http://dx.doi.org/10.17576/jsm-2017-4607-15

 

Transport Properties and Sensing Responses of Platinum Nanoparticles/Graphene Structure Fabricated by Thermal Annealing Process

(Sifat Pengangkutan dan Tindak Balas Pengesanan Struktur Nanopartikel/Grafin Platinum melalui Proses Penyepuhlindapan Termal)

 

MOHAMMAD SARWAN MOHD SANIF1, AMGAD AHMED ALI1, LEE MAI WOON2,

LEE HING WAH2, DANIEL BIEN CHIA SHENG3 & ABDUL MANAF HASHIM1*

 

1Malaysia-Japan International Institute of Technologym Universiti Teknologi Malaysia,

Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia

 

2MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Federal Territory,

Malaysia

 

3Nano Malaysia Berhad, 157 Hampshire Place, Jalan Mayang Sari, 50450 Kuala Lumpur,

Federal Territory, Malaysia

 

Received: 26 December 201/ Accepted: 27 February 2017

 

ABSTRACT

The effects of the annealing temperatures and thicknesses on the shapes, sizes and arrangement of platinum (Pt) nanoparticles (NPs) on graphene and their sensing performance for hydrogen (H2) detection were investigated. It shows strong dependency of the annealing temperatures and thicknesses on the properties of NPs. It was found that the proposed technique is able to form the NPs with good size controllability and uniformity even for thick deposited layer, thus eliminating the requirement of very thin layer of below 5 nm for the direct NP synthesis by evaporation or sputtering. The transport properties of Pt NPs/graphene structure and its sensing performance on H2 at room temperature under various H2 concentration were evaluated. The results showed an acceptable sensing response, indicating an innovative approach to fabricate Pt NPs embedded graphene for gas sensing application.

 

Keywords: Graphene; hydrogen; nanoparticles; platinum; sensors

 

ABSTRAK

Kesan suhu penyepuhlindapan dan ketebalan pada bentuk, saiz dan susunan nanopartikel (NP) platinum (Pt) pada grafin dan prestasi penderiaan pada pengesanan hidrogen (H2) telah dikaji. Ia menunjukkan kebergantungan yang kuat oleh suhu penyepuhlindapan dan ketebalan pada ciri NP seperti ini. Didapati bahawa teknik yang dicadangkan boleh membentuk NP yang mempunyai pengawalan saiz yang baik dan keseragaman walaupun pada lapisan yang diendap itu tebal dan menghapuskan keperluan lapisan yang sangat nipis di bawah 5 nm untuk sintesis NP secara langsung melalui penyejatan atau percikan. Prestasi penderiaan H2 pada suhu bilik dalam kepekatan H2 0.5-5.0% dicairkan dalam nitrogen mendedahkan respon penderiaan yang boleh diterima, menunjukkan pendekatan yang inovatif untuk fabrikasi NP Pt tertanam pada grafin sebagai penderiaan gas.

 

Kata kunci: Grafin; hidrogen; nanopartikel; pengesanan; platinum

REFERENCES

Abidin, M.S.Z., Shahjahan & Hashim, A.M. 2013. Surface reaction of undoped AlGaN/GaN HEMT based two terminal device in H+ and OH- ion-contained aqueous solution. Sains Malaysiana42(2): 197-203.

Ali, A.A. & Hashim, A.M. 2016. Computational analysis of the optical and charge transport properties of ultrasonic spray pyrolysis-grown zinc oxide/graphene hybrid structures. Nanoscal. Res. Lett. 11: 1-14.

Avouris, P. 2010. Graphene: Electronic and photonic properties and devices. Nano Lett. 10: 4285-4294.

Brauns, E., Morsbach, E., Schnurpfeil, G., Bäumer, M. & Lang, W. 2013. A miniaturized catalytic gas sensor for hydrogen detection based on stabilized nanoparticles as catalytic layer. Sens. Actuators B: Chem. 187: 420-425.

Chen, M., Hou, C., Huo, D., Bao, J., Fa, H. & Shen, C. 2016. An electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles for human multidrug resistance gene detection. Biosens. Bioelectron. 85: 684-691.

Crowl, D.A. & Jo, Y.D. 2007. The hazards and risks of hydrogen. J. of Loss Prevention in the Process Industries. 20: 158-164.

Fu, W., Feng, L., Mayer, D., Panaitov, G., Kireer, D., Offenhäusser, A. & Krause, H. 2016. Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing. Nano Lett. 16: 2295-2300.

Harvey-Trochimczyk, A., Chang, J., Zhou, Q., Dong, J., Thang Pham, Worsley, M.A., Maboudian, R., Zettl, A. & Mickelson, W. 2015. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel. Sensors and Actuators B: Chemical 20: 399-406.

Hübert, T., Boon-Brett, L., Black, G. & Banach, U. 2011. Hydrogen sensors - A review. Sens. Actuators B 157: 329-352.

Kumar, R., Malik, S. & Mehta, B.R. 2015. Interface induced hydrogen sensing in Pd nanoparticle/graphene composite layers. Sens. Actuators B 209: 919-926.

Kwak, M., Lee, S., Kim, D., Park, S.K. & Piao, Y. 2016. Facile synthesis of Au-graphene nanocomposite for the selective determination of dopamine. J. Electroanalytical Chem. 776: 66-73.

Najjar, Y.S.H. 2013. Hydrogen safety: The road toward green technology. Int. J. Hydrogen Energy 38(25): 10716-10728.

Phan, D.T. & Chung, G.S. 2015. A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid process for hydrogen detection. Sens. Actuators B 210: 661-668.

Phan, D. & Chung, G.S. 2014. Characteristics of resistivity-type hydrogen sensing based on palladium-graphene nanocomposites. Int. J. Hydrogen Energy 39: 620-629.

Rahman, S.F.A., Mahmood, M.R. & Hashim, A.M. 2014. Growth of graphene on nickel using a natural carbon source by thermal chemical vapor deposition. Sains Malaysiana43(8): 1205-1211.

Rahman, S.F.A., Kasai, S. & Hashim, A.M. 2013. Fabrication and transport performance characterization of chemically-doped three-branch junction graphene device. Sains Malaysiana 42(2): 187-192.

Schmidtchen, U. 2009. Fuels-safety | hydrogen: Overview. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering: Encyclopedia of Electrochemical Power Sources 24: 519-527.

Sharifabad, M.E., Abidin, M.S.Z., Rahman, S.F.A., Hashim, A.M., Rahman, A.R.A., Omar, N.A., Osman, M.N. & Qindeel, R. 2011. Gateless-FET pH sensor fabricated on undoped-AlGaN/GaN HEMT structure. Sains Malaysiana40(3): 267-273.

Sherif, S.A., Barbir, F. & Veziroglu, T.N. 2003. Principles of hydrogen energy production, storage and utilization. J. of Sci. Industrial Research 62(01-02): 46-63.

Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z. & Sun, Z. 2015. 3D Printable graphene composite. Scientific Reports 5: 1118-1126.

Zhang, C., Zhang, Y., Du, X., Chen, Y., Dong, W. & Han, B. 2016. Facile fabrication of Pt Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta 159: 280-286.

 

 

*Corresponding author; email: abdmanaf@utm.my

 

 

 

previous