Sains Malaysiana 46(7)(2017): 1119–1124
http://dx.doi.org/10.17576/jsm-2017-4607-15
Transport Properties and Sensing
Responses of Platinum Nanoparticles/Graphene Structure Fabricated by Thermal
Annealing Process
(Sifat Pengangkutan dan Tindak Balas Pengesanan Struktur Nanopartikel/Grafin Platinum melalui Proses Penyepuhlindapan Termal)
MOHAMMAD SARWAN MOHD SANIF1, AMGAD AHMED ALI1, LEE MAI WOON2,
LEE HING WAH2, DANIEL BIEN CHIA SHENG3 & ABDUL MANAF HASHIM1*
1Malaysia-Japan International
Institute of Technologym Universiti Teknologi Malaysia,
Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia
2MIMOS Berhad,
Technology Park Malaysia, 57000 Kuala Lumpur, Federal Territory,
Malaysia
3Nano Malaysia Berhad,
157 Hampshire Place, Jalan Mayang Sari, 50450 Kuala Lumpur,
Federal Territory, Malaysia
Received: 26 December 201/
Accepted: 27 February 2017
ABSTRACT
The effects of the annealing
temperatures and thicknesses on the shapes, sizes and arrangement of platinum
(Pt) nanoparticles (NPs) on graphene and their sensing
performance for hydrogen (H2) detection were investigated. It
shows strong dependency of the annealing temperatures and thicknesses on the
properties of NPs. It was found that the proposed technique is able to
form the NPs with good size controllability and uniformity even
for thick deposited layer, thus eliminating the requirement of very thin layer
of below 5 nm for the direct NP synthesis by evaporation or
sputtering. The transport properties of Pt NPs/graphene
structure and its sensing performance on H2 at
room temperature under various H2 concentration were evaluated. The results showed an acceptable sensing response, indicating
an innovative approach to fabricate Pt NPs embedded graphene for gas
sensing application.
Keywords: Graphene;
hydrogen; nanoparticles; platinum; sensors
ABSTRAK
Kesan suhu penyepuhlindapan
dan ketebalan
pada bentuk, saiz
dan susunan
nanopartikel (NP) platinum (Pt) pada grafin dan
prestasi penderiaan
pada pengesanan hidrogen (H2) telah
dikaji. Ia menunjukkan kebergantungan yang kuat oleh suhu penyepuhlindapan
dan ketebalan
pada ciri NP seperti ini. Didapati
bahawa teknik
yang dicadangkan boleh membentuk NP yang mempunyai
pengawalan saiz
yang baik dan keseragaman
walaupun pada
lapisan yang diendap itu tebal dan menghapuskan
keperluan lapisan yang sangat nipis di bawah
5 nm untuk sintesis NP
secara langsung melalui penyejatan
atau percikan. Prestasi penderiaan H2
pada suhu bilik
dalam kepekatan
H2
0.5-5.0% dicairkan
dalam nitrogen mendedahkan respon penderiaan yang boleh diterima, menunjukkan pendekatan yang inovatif untuk fabrikasi NP Pt
tertanam pada
grafin sebagai penderiaan gas.
Kata kunci: Grafin; hidrogen; nanopartikel; pengesanan; platinum
REFERENCES
Abidin,
M.S.Z., Shahjahan & Hashim,
A.M. 2013. Surface reaction of undoped AlGaN/GaN HEMT based two terminal device in H+ and OH- ion-contained aqueous solution. Sains Malaysiana42(2):
197-203.
Ali, A.A. & Hashim, A.M. 2016. Computational analysis of the optical and charge transport
properties of ultrasonic spray pyrolysis-grown zinc oxide/graphene hybrid
structures. Nanoscal. Res. Lett. 11: 1-14.
Avouris, P. 2010. Graphene: Electronic and
photonic properties and devices. Nano Lett. 10: 4285-4294.
Brauns,
E., Morsbach, E., Schnurpfeil,
G., Bäumer, M. & Lang, W. 2013. A
miniaturized catalytic gas sensor for hydrogen detection based on stabilized
nanoparticles as catalytic layer. Sens. Actuators B: Chem. 187: 420-425.
Chen, M., Hou, C., Huo,
D., Bao, J., Fa, H. & Shen, C. 2016. An
electrochemical DNA biosensor based on nitrogen-doped graphene/Au nanoparticles
for human multidrug resistance gene detection. Biosens. Bioelectron. 85: 684-691.
Crowl,
D.A. & Jo, Y.D. 2007. The
hazards and risks of hydrogen. J. of Loss
Prevention in the Process Industries. 20: 158-164.
Fu, W., Feng, L., Mayer, D., Panaitov,
G., Kireer, D., Offenhäusser,
A. & Krause, H. 2016. Electrolyte-gated
graphene ambipolar frequency multipliers for
biochemical sensing. Nano Lett. 16: 2295-2300.
Harvey-Trochimczyk, A., Chang, J., Zhou,
Q., Dong, J., Thang Pham, Worsley, M.A., Maboudian, R., Zettl, A. &
Mickelson, W. 2015. Catalytic hydrogen
sensing using microheated platinum
nanoparticle-loaded graphene aerogel. Sensors and Actuators B:
Chemical 20: 399-406.
Hübert,
T., Boon-Brett, L., Black, G. & Banach, U. 2011. Hydrogen sensors - A review. Sens. Actuators B 157:
329-352.
Kumar, R., Malik, S. & Mehta, B.R. 2015. Interface induced hydrogen
sensing in Pd nanoparticle/graphene
composite layers. Sens. Actuators B 209: 919-926.
Kwak, M., Lee, S., Kim, D., Park,
S.K. & Piao, Y. 2016. Facile
synthesis of Au-graphene nanocomposite for the selective determination of
dopamine. J. Electroanalytical Chem. 776: 66-73.
Najjar, Y.S.H. 2013. Hydrogen safety: The road toward
green technology. Int. J. Hydrogen Energy 38(25): 10716-10728.
Phan, D.T.
& Chung, G.S. 2015. A novel nanoporous Pd-graphene hybrid synthesized by a facile and rapid
process for hydrogen detection. Sens. Actuators B 210: 661-668.
Phan, D. &
Chung, G.S. 2014. Characteristics of resistivity-type hydrogen sensing based on
palladium-graphene nanocomposites. Int. J. Hydrogen Energy 39: 620-629.
Rahman, S.F.A.,
Mahmood, M.R. & Hashim, A.M. 2014. Growth of
graphene on nickel using a natural carbon source by thermal chemical vapor
deposition. Sains Malaysiana43(8): 1205-1211.
Rahman, S.F.A.,
Kasai, S. & Hashim, A.M. 2013. Fabrication and transport
performance characterization of chemically-doped three-branch junction graphene
device. Sains Malaysiana 42(2): 187-192.
Schmidtchen, U. 2009. Fuels-safety |
hydrogen: Overview. Reference Module in Chemistry, Molecular Sciences and
Chemical Engineering: Encyclopedia of Electrochemical Power Sources 24:
519-527.
Sharifabad, M.E., Abidin, M.S.Z., Rahman, S.F.A., Hashim,
A.M., Rahman, A.R.A., Omar, N.A., Osman, M.N. & Qindeel,
R. 2011. Gateless-FET pH sensor fabricated on undoped-AlGaN/GaN HEMT structure. Sains Malaysiana40(3): 267-273.
Sherif, S.A., Barbir,
F. & Veziroglu, T.N. 2003. Principles
of hydrogen energy production, storage and utilization. J. of Sci.
Industrial Research 62(01-02): 46-63.
Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z. &
Sun, Z. 2015. 3D Printable graphene composite. Scientific
Reports 5: 1118-1126.
Zhang, C., Zhang, Y., Du, X.,
Chen, Y., Dong, W. & Han, B. 2016. Facile fabrication of Pt Ag bimetallic
nanoparticles decorated reduced graphene oxide for highly sensitive
non-enzymatic hydrogen peroxide sensing. Talanta 159: 280-286.
*Corresponding author;
email: abdmanaf@utm.my