Sains Malaysiana 46(7)(2017): 1147–1154
http://dx.doi.org/10.17576/jsm-2017-4607-18
Fabrication and Characterization
of Graphene-on-Silicon Schottky Diode for Advanced
Power Electronic Design
(Fabrikasi dan Pencirian Grafin-atas-Silikon Diod Schottky untuk Rekaan Kuasa Elektronik Terkedepan)
MOHD ROFEI MAT HUSSIN1*, MUHAMMAD MAHYIDDIN RAMLI2, SHARAIFAH KAMARIAH WAN SABLI1, ISKHANDAR MD NASIR1, MOHD ISMAHADI SYONO1, H.Y. WONG3 & MUKTER ZAMAN3
1MIMOS Semiconductor Sdn. Bhd. (MSSB), MIMOS Bhd,
Technology Park Malaysia, 57000 Kuala Lumpur, Federal Territory, Malaysia
2School of Microelectronic
Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Indera Kayangan, Malaysia
3Faculty of Engineering, Multimedia
University, Persiaran Multimedia, 63100 Cyberjaya, Selangor Darul Ehsan, Malaysia
Received: 3 January 2017/Accepted:
6 March 2017
ABSTRACT
In this study,
graphene-on-silicon process technology was developed to fabricate a power
rectifier Schottky diode for efficiency improvement
in high operating temperature. Trench-MOS-Barrier-Schottky (TMBS)
diode structure was used to enhance the device performance. The main objective
of this research was to study the effect of reduced graphene oxide (RGO)
deposited on silicon surface for Schottky barrier
formation and heat transfer in Schottky junction. The
study showed RGO deposited on silicon as a heat spreader could help to
reduce the effect of heat generated in the Schottky junction that leads to a leakage current reduction and efficiency improvement
in the device. With comparison to the conventional metal silicide (titanium
silicide and cobalt silicide), the leakage reduced by two-orders of magnitude
when tested under high operating temperature (>100°C). TMBS rectifier
diode that uses graphene-based heat spreader could produce highly reliable
product able to withstand high temperature operating condition.
Keywords:
Graphene-on-silicon; heat spreader; power rectifier; Schottky diode
ABSTRAK
Dalam kajian ini, teknologi proses grafin-atas-silikon telah dibangunkan untuk memfabrikasi diod penerus kuasa Schottky bagi meningkatkan kecekapannya pada suhu operasi yang tinggi. Struktur diod Parit-MOS-Halangan-Schottky (TMBS) telah digunakan untuk meningkatkan prestasi peranti. Objektif utama kajian ini adalah untuk mengkaji kesan grafin oksida dikurangkan (RGO)
yang dimendapkan pada permukaan silikon untuk pembentukan halangan Schottky dan pemindahan haba dalam persimpangan Schottky. Kajian ini menunjukkan RGO yang dimendapkan di permukaan silikon sebagai penyebar haba boleh membantu untuk mengurangkan kesan haba yang terjana dalam persimpangan Schottky yang membawa kepada pengurangan arus bocor dan peningkatan kecekapan peranti. Secara perbandingan dengan logam silisida konvensional (titanium silisida dan kobalt silisida), kebocoran arus elektrik telah berkurang sebanyak dua magnitud lebih rendah apabila diuji di bawah suhu operasi yang tinggi (>100°C). Diod penerus TMBS yang menggunakan penyebar haba berasaskan grafin berkemungkinan boleh menghasilkan produk yang sangat stabil dalam keadaan operasi suhu yang tinggi.
Kata kunci: Diod Schottky; grafin-atas-silikon; penerus kuasa; penyebar haba
REFERENCES
Balandin, A.A. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10(8): 569-581.
Balandin. A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D.,
Miao, F. & Lau, C.N. 2008. Superior thermal
conductivity of single-layer graphene. Nano Lett. 8(3): 902-907.
Bartolomeo, A.D.
2016. Graphene Schottky diodes: An experimental
review of the rectifying graphene/semiconductor heterojunction. Physics
Reports 606: 1-58.
Blake,
P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang,
D., Schedin, F., Ponomarenko,
L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K. & Novoselov, K.S.
2008. Graphene-based liquid crystal device. Nano Lett. 8(6):
1704-1708.
Coa,
N. & Zhang, Y. 2014. Study of reduced graphene oxide preparation by hummers method and related characterization. Journal of
Nanomaterials 2015: 1-5.
Eda,
G. & Chhowalla, M. 2010. Chemically
derived graphene oxide: Towards large-area thin-film electronics and
optoelectronics. Advanced Materials 22(22): 2392-2415.
Eda,
G., Lin, Y.Y., Mattevi, C., Yamaguchi, H., Chen,
H.A., Chen, I.S., Chen, C.W. & Chhowalla, M.
2010. Blue photoluminescence from chemically derived graphene
oxide. Adv. Mater. 22(4): 505509.
Ferrari,
A.C. 2007. Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. Solid State Commun. 143: 4757.
Ferrari,
A.C. & Robertson, J. 2000. Interpretation of
Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61:
1409514107.
Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B.,
Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G.,
Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci,
V., Ferrari, A.C. & Coleman, J.N. 2008. High-yield
production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3: 563-568.
Hussin,
M.R.M., Ismail, M.A., Sabli, S.K.W., Saidin, N., Wong, H.Y. & Zaman, M. 2015. Design and
fabrication of low voltage silicon trench MOS barrier Schottky rectifier for high temperature applications. IEEE 11th International
Conference on Power Electronics and Drive Systems (PEDS), DOI:
10.1109/PEDS.2015.7203419.
Khairir,
N.S., Hussin, M.R.M.H., Khairir,
M.I., Us-Zaman, A.S.M.M., Abdullah, W.F.H., Mamat,
M.H., & Zoolfakar, A.S. 2016. Schottky behavior of reduced graphene oxide at various operating temperatures. Surfaces
and Interfaces 6: 229-236. DOI: 10.1016/j.surfin.2016.10.004.
Khairir,
N.S., Hussin, M.R.M., Nasir, I.M., Us-Zaman,
A.S.M.M., Abdullah, W.F.H. & Zoolfakar, A.S.
2015. Study of reduced graphene oxide for trench Schottky diode. 4th International Conference on Electronic Devices, Systems and
Applications 2015 (ICEDSA), Materials Science and Engineering, 99: 012031.
Kudin,
K.N., Ozbas, B., Schniepp,
H.C., Prud’homme, R.K., Aksay,
I.A. & Car, R. 2008. Raman spectra of graphite oxide
and functionalized graphene sheets. Nano Lett. 8(1): 3641.
Mohammed, M.,
Li, Z., Cui, J. & Chen, T. 2012. Junction investigation of
graphene/silicon Schottky diodes. Nanoscale
Research Letters 7: 302.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang,
D., Katsnelson, M.I., Grigorieva1, I.V., Dubonos, S.V. & Firsov, A.A.
2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197-200.
Parker, J.H.,
Feldman Jr., D.W. & Ashkin, M. 1967. Raman
scattering by silicon and germanium. Phys. Rev. 155: 712.
Pei, S. &
Cheng, H.M. 2012. The reduction of graphene oxide. Carbon 50:
3210-3228.
Plesca, A. 2011. Thermal
analysis of power semiconductor converters. IntechOpen,
DOI: 10.5772/16407.
Shahriary, L. & Athawale, A.A. 2014. Graphene oxide synthesized by using modified
hummers approach. International Journal of Renewable Energy and
Environmental Engineering 2(1): 58-63.
Shi, H.F.,
Wang, C., Sun, Z.P., Zhou, Y.L., Jin, K.J. &
Yang, G.Z. 2015. Transparent conductive reduced graphene oxide thin films
produced by spray coating. Science China Physics, Mechanics &
Astronomy 58(1): 1-5.
Shi, H.F.,
Wang, C., Sun, Z.P., Zhou, Y.L., Jin, K.J., Redfen, S.A.T. & Yang, G.Z. 2014. Tuning the
nonlinear optical absorption of reduced graphene oxide by chemical reduction. Optics Express 22(16): 19375-19385.
Some, S., Kim,
Y.M., Yoon, Y.H., Yoo, H.J., Lee, S., Park, Y.H.
& Lee, H.Y. 2013. High-quality reduced graphene oxide by a dual-function chemical reduction and
healing process. Scientific Reports 3: 1929.
*Corresponding
author; email: rofei@mimos.my