Sains Malaysiana 46(7)(2017): 1147–1154

http://dx.doi.org/10.17576/jsm-2017-4607-18

 

Fabrication and Characterization of Graphene-on-Silicon Schottky Diode for Advanced Power Electronic Design

(Fabrikasi dan Pencirian Grafin-atas-Silikon Diod Schottky untuk Rekaan Kuasa Elektronik Terkedepan)

MOHD ROFEI MAT HUSSIN1*, MUHAMMAD MAHYIDDIN RAMLI2, SHARAIFAH KAMARIAH WAN SABLI1, ISKHANDAR MD NASIR1, MOHD ISMAHADI SYONO1, H.Y. WONG3 & MUKTER ZAMAN3

 

1MIMOS Semiconductor Sdn. Bhd. (MSSB), MIMOS Bhd, Technology Park Malaysia, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

2School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Indera Kayangan, Malaysia

 

3Faculty of Engineering, Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor Darul Ehsan, Malaysia

 

Received: 3 January 2017/Accepted: 6 March 2017

 

ABSTRACT

In this study, graphene-on-silicon process technology was developed to fabricate a power rectifier Schottky diode for efficiency improvement in high operating temperature. Trench-MOS-Barrier-Schottky (TMBS) diode structure was used to enhance the device performance. The main objective of this research was to study the effect of reduced graphene oxide (RGO) deposited on silicon surface for Schottky barrier formation and heat transfer in Schottky junction. The study showed RGO deposited on silicon as a heat spreader could help to reduce the effect of heat generated in the Schottky junction that leads to a leakage current reduction and efficiency improvement in the device. With comparison to the conventional metal silicide (titanium silicide and cobalt silicide), the leakage reduced by two-orders of magnitude when tested under high operating temperature (>100°C). TMBS rectifier diode that uses graphene-based heat spreader could produce highly reliable product able to withstand high temperature operating condition.

 

Keywords: Graphene-on-silicon; heat spreader; power rectifier; Schottky diode

 

ABSTRAK

Dalam kajian ini, teknologi proses grafin-atas-silikon telah dibangunkan untuk memfabrikasi diod penerus kuasa Schottky bagi meningkatkan kecekapannya pada suhu operasi yang tinggi. Struktur diod Parit-MOS-Halangan-Schottky (TMBS) telah digunakan untuk meningkatkan prestasi peranti. Objektif utama kajian ini adalah untuk mengkaji kesan grafin oksida dikurangkan (RGO) yang dimendapkan pada permukaan silikon untuk pembentukan halangan Schottky dan pemindahan haba dalam persimpangan Schottky. Kajian ini menunjukkan RGO yang dimendapkan di permukaan silikon sebagai penyebar haba boleh membantu untuk mengurangkan kesan haba yang terjana dalam persimpangan Schottky yang membawa kepada pengurangan arus bocor dan peningkatan kecekapan peranti. Secara perbandingan dengan logam silisida konvensional (titanium silisida dan kobalt silisida), kebocoran arus elektrik telah berkurang sebanyak dua magnitud lebih rendah apabila diuji di bawah suhu operasi yang tinggi (>100°C). Diod penerus TMBS yang menggunakan penyebar haba berasaskan grafin berkemungkinan boleh menghasilkan produk yang sangat stabil dalam keadaan operasi suhu yang tinggi.

 

Kata kunci: Diod Schottky; grafin-atas-silikon; penerus kuasa; penyebar haba

 

 

REFERENCES

 

Balandin, A.A. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature Materials 10(8): 569-581.

Balandin. A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. 2008. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3): 902-907.

Bartolomeo, A.D. 2016. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports 606: 1-58.

Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K. & Novoselov, K.S. 2008. Graphene-based liquid crystal device. Nano Lett. 8(6): 1704-1708.

Coa, N. & Zhang, Y. 2014. Study of reduced graphene oxide preparation by hummers method and related characterization. Journal of Nanomaterials 2015: 1-5.

Eda, G. & Chhowalla, M. 2010. Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials 22(22): 2392-2415.

Eda, G., Lin, Y.Y., Mattevi, C., Yamaguchi, H., Chen, H.A., Chen, I.S., Chen, C.W. & Chhowalla, M. 2010. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22(4): 505509.

Ferrari, A.C. 2007. Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects. Solid State Commun. 143: 4757.

Ferrari, A.C. & Robertson, J. 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61: 1409514107.

Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C. & Coleman, J.N. 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3: 563-568.

Hussin, M.R.M., Ismail, M.A., Sabli, S.K.W., Saidin, N., Wong, H.Y. & Zaman, M. 2015. Design and fabrication of low voltage silicon trench MOS barrier Schottky rectifier for high temperature applications. IEEE 11th International Conference on Power Electronics and Drive Systems (PEDS), DOI: 10.1109/PEDS.2015.7203419.

Khairir, N.S., Hussin, M.R.M.H., Khairir, M.I., Us-Zaman, A.S.M.M., Abdullah, W.F.H., Mamat, M.H., & Zoolfakar, A.S. 2016. Schottky behavior of reduced graphene oxide at various operating temperatures. Surfaces and Interfaces 6: 229-236. DOI: 10.1016/j.surfin.2016.10.004.

Khairir, N.S., Hussin, M.R.M., Nasir, I.M., Us-Zaman, A.S.M.M., Abdullah, W.F.H. & Zoolfakar, A.S. 2015. Study of reduced graphene oxide for trench Schottky diode. 4th International Conference on Electronic Devices, Systems and Applications 2015 (ICEDSA), Materials Science and Engineering, 99: 012031.

Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A. & Car, R. 2008. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8(1): 3641.

Mohammed, M., Li, Z., Cui, J. & Chen, T. 2012. Junction investigation of graphene/silicon Schottky diodes. Nanoscale Research Letters 7: 302.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva1, I.V., Dubonos, S.V. & Firsov, A.A. 2005. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438: 197-200.

Parker, J.H., Feldman Jr., D.W. & Ashkin, M. 1967. Raman scattering by silicon and germanium. Phys. Rev. 155: 712.

Pei, S. & Cheng, H.M. 2012. The reduction of graphene oxide. Carbon 50: 3210-3228.

Plesca, A. 2011. Thermal analysis of power semiconductor converters. IntechOpen, DOI: 10.5772/16407.

Shahriary, L. & Athawale, A.A. 2014. Graphene oxide synthesized by using modified hummers approach. International Journal of Renewable Energy and Environmental Engineering 2(1): 58-63.

Shi, H.F., Wang, C., Sun, Z.P., Zhou, Y.L., Jin, K.J. & Yang, G.Z. 2015. Transparent conductive reduced graphene oxide thin films produced by spray coating. Science China Physics, Mechanics & Astronomy 58(1): 1-5.

Shi, H.F., Wang, C., Sun, Z.P., Zhou, Y.L., Jin, K.J., Redfen, S.A.T. & Yang, G.Z. 2014. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction. Optics Express 22(16): 19375-19385.

Some, S., Kim, Y.M., Yoon, Y.H., Yoo, H.J., Lee, S., Park, Y.H. & Lee, H.Y. 2013. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process. Scientific Reports 3: 1929.

 

 

*Corresponding author; email: rofei@mimos.my

 

 

previous