Sains Malaysiana 46(7)(2017): 1155–1161

http://dx.doi.org/10.17576/jsm-2017-4607-19

 

Highly-Sensitive Graphene-based Flexible Pressure Sensor Platform

(Pentas Sensor Tekanan Fleksibel Sensitif Berasaskan Grafin)

 

MUHAMMAD ANIQ SHAZNI, MAI WOON LEE & HING WAH LEE*

 

MIMOS Semiconductor (M) Sdn. Bhd, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 5 January 2017/Accepted: 6 March 2017

 

ABSTRACT

In this work, graphene has been utilized as the sensing material for the development of a highly-sensitive flexible pressure sensor platform. It has been demonstrated that a graphene-based pressure sensor platform that is able to measure pressure change of up to 3 psi with a sensitivity of 0.042 psi-1 and a non-linearity of less than 1% has been accomplished. The developed device, which resides on a flexible platform, will be applicable for integration in continuous wearables health-care monitoring system for the measurement of blood pressure.

 

Keywords: Chemical vapor deposition (CVD); flexible; graphene; interdigitated electrodes (IDE); pressure sensor; wearables

 

ABSTRAK

Dalam kajian ini, grafin telah digunakan sebagai bahan penderiaan untuk pembangunan pentas fleksibel untuk penderia tekanan darah yang sangat sensitif. Ia telah dibuktikan bahawa sebuah pentas penderia tekanan yang berasaskan grafin berupaya untuk mencapai pengukuran perubahan tekanan sehingga 3 psi dengan kepekaan 0.042 psi-1 dan ketidak-linearan yang kurang daripada 1%. Penderia yang telah dibangunkan ini sesuai untuk digunakan dalam sistem boleh guna pemantauan tekananan darah secara berterusan bagi industri penjagaan kesihatan.

 

Kata kunci: Boleh guna; elektrod interdigit (IDE); fleksibel; grafin; pemendapan wap kimia (CVD); penderia tekanan

REFERENCES

Bao, M. 2000. Micro mechanical transducer - pressure sensors. Accelerometers and Gyroscopes. New York: Elsevier.

Bunch, J.S., Van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G. & McEuen, P.L. 2007. Electromechanical resonators from graphene sheets. Science 315(5811): 490-493.

Castellanos-Gomez, A., Poot, M., Steele, G.A., Van der Zant, H.S.J., Agraït, N. & Rubio-Bollinger, G. 2012. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Research Letters 7: 233.

Chen, C., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., Kymissis, I., Stormer, H.L., Heinz, T.F. & Hone, J. 2009. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nature Nanotechnology 4(12): 861-867.

Frank, I.W., Tanenbaum, D.M., Van der Zande, A.M. & McEuen, P.L. 2007. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 25(6): 2558-2561.

Gau, C., Ko, H.S. & Chen, H.T. 2009. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor. Nanotechnology 20: 185503.

Gómez-Navarro, C., Burghard, M. & Kern, K. 2008. Elastic properties of chemically derived single graphene sheets. Nanoletters 8(7): 2045-2049.

Helbling, T., Drittenbass, S., Durrer, L., Roman, C. & Hierold, C. 2009. Ultra small single walled carbon nanotube pressure sensors. IEEE 22nd International Conference on Micro Electro Mechanical Systems. pp. 575-578.

Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F. & Zhang, H. 2011. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 7(14): 1876-1902.

Jun, S., Tashi, T. & Park, H.S. 2011. Size dependence of the nonlinear elastic softening of nanoscale graphene monolayers under plane-strain bulge tests: A molecular dynamics study. Journal of Nanomaterials (Special Issue) 2011: Article No. 15.

Kesapragada, S.V., Victor, P., Nalamasu, O. & Gall, D. 2006. Nanospring pressure sensors grown by glancing angle deposition. Nano Letters 6(4): 854-857.

Kwon, O.K., Lee, J.H., Kim, K.S. & Kang, J.W. 2013. Developing ultrasensitive pressure sensor based on graphene nanoribbon: Molecular dynamics simulation. Physica E: Low-dimensional Systems and Nanostructures 47: 6-11.

Lanotte, L., Ausanio, G., Hison, C., Iannotti, V., Luponio, C. & Luponio Jr., C. 2004. State of the art and development trends of novel nanostructured elastomagnetic composites. Journal of Optoelectronics and Advanced Materials 6(2): 523-532.

Luheng, W., Tianhuai, D. & Peng, W. 2009. Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite. IEEE Sens. J. 9: 1130-1135.

Milaninia, K.M., Baldo, M.A., Reina, A. & Kong, J. 2009. All graphene electromechanical switch fabricated by chemical vapor deposition. Applied Physics Letters 95(18): 183105.

Patil, S., Sinha, N. & Melnik, R.V.N. 2009. Modeling of GaN/AlN heterostructure-based nano pressure sensors. In Nanoengineering Fabrication, Properties, Optics and Devices IV, edited by Dobisz, E.A. & Eldada, L.A. San Diego: SPIE-The International Society for Optical Engineering. 74020C-8.

Poot, M. & van der Zant, H.S.J. 2008. Nanomechanical properties of few-layer graphene membranes. Applied Physics Letters 92(6): 063111.

Singh, V., Sengupta, S., Solanki, H.S., Dhall, R., Allain, A., Dhara, S., Pant, P. & Deshmukh, M.M. 2010. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. IOP Science Nanotechnology 21(16): 165204.

Sorkin, V. & Zhang, Y.W. 2011. Graphene-based pressure nano-sensors. Journal of Molecular Modeling 17(11): 2825-2830.

Yao, H-B., Ge, J., Wang, C-F., Wang, X., Hu, W., Zheng, Z-J., Ni, Y. & Yu, S-H. 2013. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46): 6692-6698.

 

 

*Corresponding author; email: hingwah.lee@mimos.my

 

 

previous