Sains Malaysiana 46(8)(2017): 1249–1257

http://dx.doi.org/10.17576/jsm-2017-4608-10

 

Efficiency of Developed Solid State Bioreactor 'FERMSOSTAT' on Cellulolytic and Xylanase Enzymes Production

(Kecekapan Bioreaktor Keadaan Pepejal ‘FERMSOSTAT’ yang Dibangunkan
ke atas Pengeluaran Enzim Selulolitik dan Xilanase)

 

C.K. LEE1,2*, DARAH, I.1  & IBRAHIM, C.O.3

 

1Industrial Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Pulau Pinang, Malaysia

 

2Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Pulau Pinang, Malaysia

 

3Universiti Malaysia Kelantan, Campus Jeli, Beg Berkunci No 100, 17600 Jeli, Kelantan Darul Naim, Malaysia

 

Received: 22 January 2016/Accepted: 1 February 2017

 

ABSTRACT

FERMSOSTAT is a developed laboratory scale solid state fermenter. It is a horizontal stirrer drum bioreactor with about 70 L capacities. The fermenter is made of stainless steel which is anti-corrosive and non-toxic to the process organism. The fermenter is equipped with sets of control systems for temperature, agitation, aeration and also outlets for substrate sampling as well as inlets for inoculation and substrate additions. The uniqueness of this FERMSOSTAT system is its ability to carry out in situ substrate sterilization and extraction of enzymes at the end of SSF process. Moreover, the mixing system provided by FERMSOSTAT can be performed either full or half mixing as well as forward or reverse mixing. Furthermore, the mixing can be programmed to run at certain agitation rate and time interval during the fermentation process to prevent or reduce damage to the fungus mycelia. FERMSOSTAT is a developed SSF bioreactor and not an improvement of any existing one. The performances of FERMSOSTAT have been evaluated. Under optimum solid state fermentation conditions, about 63.4, 397 and 3.21 U/g of CMCase, xylanase and FPase activities were detected, which were higher compared to the tray system.

 

Keywords: Cellulase; palm kernel cake; solid state fermentation; sugarcane bagasse; xylanase

 

ABSTRAK

FERMOSTAT adalah fermenter keadaan pepejal berskala makmal yang dibangunkan. Ia adalah bioreaktor pengacau gendang mendatar dengan kapasiti kira-kira 70 L. Fermenter ini terdiri daripada keluli tahan karat yang anti hakis dan tidak toksik terhadap organisma. Fermenter ini dilengkapi dengan sistem kawalan suhu, penggoncangan, pengudaraan dan juga salur keluar untuk persampelan substrat dan salur masuk untuk inokulasi dan penambahan substrat. Keunikan sistem FERMOSTAT ini adalah keupayaan untuk menjalankan pensterilan substrat secara in situ dan pengekstrakan enzim pada akhir proses SSF. Selain itu, sistem pencampuran yang dilengkapi oleh FERMSOSTAT boleh melakukan pencampuran secara penuh atau separuh penuh dan juga pencampuran ke depan atau sebaliknya. Tambahan pula, pencampuran boleh diprogramkan untuk melakukan kadar pergolakan yang berlainan dan pada selang masa yang berbeza sepanjang masa proses penapaian untuk mengelak atau mengurangkan kecederaan pada miselium kulat. FERMSOSTAT adalah SSF bioreaktor yang telah dibangunkan dan bukan penambahbaikan daripada yang sedia ada. Prestasi FERMSOSTAT telah dinilai. Dalam keadaan optimum fermentasi keadaan pepejal, kira-kira 63.4, 397 dan 3.21 U/g aktiviti CMCase, xilanase dan FPase telah dikesan dengan nilainya adalah lebih tinggi berbanding dengan sistem dulang.

Kata kunci: Fermentasi keadaan pepejal; hampas tebu; isirong kelapa sawit; selulase; xilanase

REFERENCES

Aikat, K. & Bhattacharyya, B.C. 2000. Protease extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzaeand growth studies by the soft gel technique. Process Biochemistry 35: 907-914.

Chen, H.Z., Xu, J. & Li, Z.H. 2005. Temperature control at different bed depths in a novel solid-state fermentation system with two dynamic changes of air. Biochemical Engineering Journal 23(2): 117-122.

Chandra, M.S., Viswanath, B. & Reddy, B.R. 2007. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger. Indian Journal of Microbiology 47: 323-328.

Considine, P.J., ORorke, A., Hackett, T.J. & Coughlan, M.P. 1988. Hydrolysis of beet pulp polysaccharides by extracts of solid state cultures of Penicillium capsulatum. Biotechnology and Bioengineering 31: 433-438.

Durand, A. 2003. Bioreactor design for solid state fermentation. Biochemical Engineering Journal 13: 113-125.

Gao, J.M., Weng, H.B., Zhu, D.H., Yuan, M.X., Guan, F.X. & Xi, Y. 2008. Production and characterization of cellulolytic enzymes from the thermoacidopilic fungal Aspergillus terreusM11 under solid state cultivation of corn stover. Bioresource Technology 99: 7623-7629.

Gessesse, A. & Gashaw, M. 1999. High-level xylanases production by an alkaliphilic Bacillus sp. by using solid-state fermentation. Enzyme and Microbial Technology 25: 68-72.

Gessesse, A. & Gashe, B.A. 1997. Production of alkaline xylanases by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake. Journal of Applied Microbiology 83: 402-406.

Ghose, T.K. 1987. Measurement of cellulase activities. Pure Applied Chemistry 59: 257-268.

Hardin, M. 2004. Solid state fermentation for bioconversion of biomass: Design of bioreactors for solid state fermentation. In Concise Encyclopedia of Bioresource Technology, edited by Pandey, A. Binghamton, New York: Food Product Press & The Haworth Reference Press. pp. 679-689.

Kumar, P.K.R. & Lonsane, B.K. 1987. Potential of fed batch culture in solid state fermentation for production of gibberellic acid. Biotechnology Letter 9: 179-182.

Kumar, P.K.R. & Lonsane, B.K. 1988. Batch and fed batch solid state fermentation: Kinetics of cell growth, hydrolytic enzymes production and gibberellic acid production. Process Biochemistry 23: 43-47.

Laukevics, J.J., Aspite, A.F., Viestures, H.E. & Tengerdy, R.P. 1984. Solid state fermentation of wheat straw for production of fungal protein. Biotechnology and Bioengineering 26: 1465-1474.

Lee, C.K., Darah, I. and Ibrahim, C.O. 2015. Governing parameters on xylanase production using developed bioreactor. Malaysian Journal of Microbiology 11(1): 81-92.

Lee, C.K., Darah, I. & Ibrahim, C.O. 2013. Investigation of newly developed solid state fermenter on carboxymethyl cellulase production. Malaysian Journal of Microbiology 9(3): 227-236.

Lee, C.K., Darah, I. & Ibrahim, C.O. 2011. Production and optimization of cellulase enzyme using Aspergillus nigerUSM AI 1 and comparison with Trichoderma reesei via solid state fermentation system. Biotechnology Research International 2011: Article ID. 658493. doi:10.4061/2011/658493.

Lee, C.K., Pang, P.K., Darah, I. & Ibrahim, C.O. 2007. Comparative evaluation of cellulase and xylanase production by Aspergillus niger USM AI 1 in solid state fermentation using tray and bioreactor systems. Abstract of the International Symposium in Science and Technology. Collaboration between ASEAN Countries in Environment and Life Science. 31st-1st August 2007, Kansai University, Osaka, Japan. pp: PO-16.

Lonsane, B.K., Ghildyal, N.P., Budiatman, S. & Ramakrishna, S.V. 1985. Engineering aspects of solid state fermentation. Enzyme and Microbial Technology 7: 258-265.

Lonsane, B.K., Durand, A., Renaud, R., Almanza, S., Maratray, J., Desgranges, C., Crooke, P.S., Hong, K., Maloney, C.W. & Tanner, R.D. 1992a. Product leaching and downstream processing. In Solid Substrate Cultivation, edited by Doelle, H.W., Mitchell, D.A. & Rolz, C.W. London: Elsevier Science Publishers. pp.147-171.

Lonsane, B.K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez, G., Ghildyal, N.P., Ramakrishna, M. & Krishnaiah, M.M. 1992b. Scale up strategies for solid state fermentation systems. Process Biochemistry 27: 259-273.

Luth, P. & Eiben, U. 1999. Solid-state Fermenter and Method for Solid-state Fermentation. World patent No. WO 99/57239.

Matsuno, R., Adachi, S. & Uosaki, H. 1993. Bioreduction of prochiral ketones with yeast cells cultivated in a vibrating air-solid fluidized bed fermentor. Biotechnology Advance 11: 509-517.

Mitchell, D.A., Berovic, M. & Krieger, N. 2006a. Introduction to solid state fermentation bioreactors. In Solid State Bioreactors: Fundamentals of Design and Operation, edited by Mitchell, D.A., Krieger, N. and Berovi, M. Berlin Heidelberg Germany: Springer-Verlag. pp. 33-44.

Mitchell, D.A., Meien, O.F.V., Luz, Jr. L.F.L. & Berovic, M. 2006b. The scale up challenge for SSF Bioreactors. In Solid State Bioreactors: Fundamentals of Design and Operation, edited by Mitchell, D.A., Krieger, N. & Berovi, M. Berlin Heidelberg Germany: Springer-Verlag. pp. 57-64.

Mitchell, D.A., Krieger, N., Berovic, M. & Luz Jr. L.F.L. 2006c. Group IVa: Continuously-mixed, forcefully aerated bioreactors. In Solid State Bioreactors: Fundamentals of Design and Operation, edited by Mitchell, D.A., Krieger, N. & Berovi, M. Berlin Heidelberg Germany: Springer-Verlag. pp. 115-128.

Mitchell, D.A., Krieger, N., Stuart, D.M. & Pandey, A. 2000b. New developments in solid state fermentation II. Rational approaches to the design, operation and scale up of bioreactors. Process Biochemistry 35: 1211-1225.

Mitchell, D.A., Von Meien, O.F. & Krieger, N. 2003. Recent developments in modeling of solid state fermentation: Heat and mass transfer in bioreactors. Biochemical Engineering Journal 13: 137-147.

Nagel, F.J.I., Tramper, J., Bakker, M.S.N. & Rinzema, A. 2001. Model for online moisture content control during solid state fermentation. Biotechnology and Bioengineering 72(2): 231-243.

Oberoi, H.S., Chavan, Y., Bansai, S. & Dhilon, G.S. 2010. Production of cellulases through solid state fermentation using kinnow pulp as a major substrate. Food Bioprocess Technology 3(4): 528-536.

Pandey, A. 2003. Solid state fermentation. Biochemical Engineering Journal 13: 81-84.

Pandey, A. 1994. Solid-state fermentation: An overview. In Solid State Fermentation, edited by Pandey, A. New Delhi: Wiley. pp. 3-10.

Pandey, A. 1992. Recent process developments in solid state fermentation. Process Biochemistry 27: 109-117.

Pandey, A. 1991. Aspects of fermenter design for solid state fermentations. Process Biochemistry 26: 355-361.

Pandey, A., Soccol, C.R. & Mitchell, D 2000a. New developments in solid state fermentation. I: Processes and products. Process Biochemistry 35: 1153-1169.

Pang, P.K., Darah, I., Poppe, L. Szakacs, G. & Ibrahim, C.O. 2006. Xylanase production by local isolate, Trichoderma sp. FETL C3-2 via solid-state fermentation using agricultural wastes as substrates. Malaysian Journal of Microbiology 2: 7-14.

Perez-Guerra, N., Torrado-Agrasar, A., Lopez-Macias, C. & Pastrana, L. 2003. Main characteristic and applications of solid substrate fermentation. Electronic Journal of Environmental, Agricultural and Food Chemistry 2(3): 343-350.

Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. EJB Electronic Journal of Biotechnology 1(3): 174-188.

Raimbault, M. & Alazard, D. 1980. Culture method to study fungal growth in solid fermentation. European Journal of Applied Microbiology and Biotechnology 9: 199-209.

Rathbun, B.L. & Shuler, M.L. 1983. Heat and mass transfer effects in static solid-substrate fermentations: Design of fermentation chambers. Biotechnology and Bioengineering 25: 929-238.

Smits, J.P., Rinzema, A., Tramper, J., van Sonsbeek, H.M. & Knol, W. 1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: Substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiology and Biotechnology 46: 489-496.

Suryanarayan, S. & Mazumdar, K. 2000. Solid State Fermentation. World Patent no. WO 00/29544.

Suryanarayan, S. 2003. Current industrial practice in solid state fermentations for secondary metabolite production: The Biocon India experience. Biochemistry Engineering Journal 13: 189-195.

Swift, J. 1972. The estimation of mycelial biomass by determination of the hexosamine content of wood tissues decayed by fungi. Soil Biological and Biochemistry 5: 321-322.

Tao, S., Zuohu, L. & Deming, L. 1996. A novel design of solid state fermenter and its evaluation for cellulase production by Trichoderma viride SL-1. Biotechnology Techniques 10(11): 889-894.

Xu, Y.X., Li, Y.L., Xu, S.C., Liu, Y., Wang, X. & Tang, J.W. 2008. Improvement of xylanase production by Aspergillus nigerXY-1 using response surface methodology for optimizing the medium composition. Journal of Zhejiang University Science B 7: 558-566.

 

 

*Corresponding author; email: cklee1311@yahoo.co.uk

 

 

 

 

 

previous