Sains Malaysiana 46(8)(2017):
1249–1257
http://dx.doi.org/10.17576/jsm-2017-4608-10
Efficiency of Developed
Solid State Bioreactor 'FERMSOSTAT' on Cellulolytic and Xylanase
Enzymes Production
(Kecekapan Bioreaktor
Keadaan Pepejal ‘FERMSOSTAT’ yang Dibangunkan
ke atas Pengeluaran Enzim Selulolitik dan Xilanase)
C.K. LEE1,2*, DARAH, I.1 & IBRAHIM, C.O.3
1Industrial
Biotechnology Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800
USM, Penang, Pulau Pinang, Malaysia
2Bioprocess
Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Pulau Pinang, Malaysia
3Universiti
Malaysia Kelantan, Campus Jeli, Beg Berkunci No 100, 17600 Jeli,
Kelantan Darul Naim, Malaysia
Received: 22
January 2016/Accepted: 1 February 2017
ABSTRACT
FERMSOSTAT is a developed laboratory scale solid state fermenter. It is a horizontal
stirrer drum bioreactor with about 70 L capacities. The fermenter
is made of stainless steel which is anti-corrosive and non-toxic
to the process organism. The fermenter is equipped with sets of
control systems for temperature, agitation, aeration and also
outlets for substrate sampling as well as inlets for inoculation
and substrate additions. The uniqueness of this FERMSOSTAT
system is its ability to carry out in situ substrate
sterilization and extraction of enzymes at the end of SSF process. Moreover, the mixing
system provided by FERMSOSTAT can be performed either full
or half mixing as well as forward or reverse mixing. Furthermore,
the mixing can be programmed to run at certain agitation rate
and time interval during the fermentation process to prevent or
reduce damage to the fungus mycelia. FERMSOSTAT is a developed SSF bioreactor
and not an improvement of any existing one. The performances of
FERMSOSTAT have
been evaluated. Under optimum solid state fermentation conditions,
about 63.4, 397 and 3.21 U/g of CMCase, xylanase and FPase activities were detected, which were higher
compared to the tray system.
Keywords: Cellulase; palm kernel cake; solid state fermentation;
sugarcane bagasse; xylanase
ABSTRAK
FERMOSTAT
adalah fermenter keadaan pepejal
berskala makmal
yang dibangunkan. Ia adalah
bioreaktor pengacau
gendang mendatar dengan kapasiti kira-kira 70 L. Fermenter ini
terdiri daripada keluli tahan karat yang anti
hakis dan tidak
toksik terhadap
organisma. Fermenter ini
dilengkapi dengan
sistem kawalan suhu, penggoncangan, pengudaraan dan juga salur keluar untuk
persampelan substrat
dan salur masuk
untuk inokulasi
dan penambahan substrat. Keunikan sistem FERMOSTAT ini
adalah keupayaan
untuk menjalankan pensterilan substrat secara in situ dan pengekstrakan enzim pada akhir proses SSF.
Selain itu, sistem
pencampuran yang dilengkapi
oleh FERMSOSTAT boleh
melakukan pencampuran
secara penuh atau
separuh penuh
dan juga pencampuran ke depan atau
sebaliknya. Tambahan
pula, pencampuran boleh diprogramkan untuk melakukan kadar
pergolakan yang berlainan
dan pada selang
masa yang berbeza sepanjang
masa proses penapaian untuk
mengelak atau
mengurangkan kecederaan pada miselium kulat. FERMSOSTAT adalah SSF
bioreaktor yang telah dibangunkan dan bukan penambahbaikan daripada yang sedia ada. Prestasi FERMSOSTAT telah dinilai. Dalam keadaan optimum fermentasi keadaan pepejal, kira-kira 63.4, 397 dan 3.21
U/g aktiviti CMCase,
xilanase dan
FPase telah dikesan
dengan nilainya
adalah lebih tinggi
berbanding dengan
sistem dulang.
Kata kunci: Fermentasi keadaan pepejal; hampas tebu; isirong
kelapa sawit;
selulase; xilanase
REFERENCES
Aikat,
K. & Bhattacharyya, B.C. 2000. Protease
extraction in solid state fermentation of wheat bran by a local strain of Rhizopus oryzaeand
growth studies by the soft gel technique. Process Biochemistry 35:
907-914.
Chen,
H.Z., Xu, J. & Li, Z.H. 2005. Temperature control at different bed depths in a novel solid-state
fermentation system with two dynamic changes of air. Biochemical
Engineering Journal 23(2): 117-122.
Chandra,
M.S., Viswanath, B. & Reddy, B.R. 2007.
Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation
by Aspergillus niger.
Indian Journal of Microbiology 47: 323-328.
Considine,
P.J., ORorke, A., Hackett, T.J. & Coughlan, M.P.
1988. Hydrolysis of beet pulp polysaccharides by extracts of solid state cultures of Penicillium capsulatum. Biotechnology and Bioengineering 31: 433-438.
Durand,
A. 2003. Bioreactor design for solid state
fermentation. Biochemical Engineering Journal 13: 113-125.
Gao,
J.M., Weng, H.B., Zhu, D.H., Yuan, M.X., Guan, F.X.
& Xi, Y. 2008. Production and characterization of
cellulolytic enzymes from the thermoacidopilic fungal Aspergillus terreusM11 under solid state
cultivation of corn stover. Bioresource Technology 99: 7623-7629.
Gessesse,
A. & Gashaw, M. 1999. High-level xylanases production by an alkaliphilic
Bacillus sp. by using solid-state fermentation. Enzyme and Microbial
Technology 25: 68-72.
Gessesse,
A. & Gashe, B.A. 1997. Production of alkaline xylanases by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake. Journal of Applied Microbiology 83: 402-406.
Ghose,
T.K. 1987. Measurement of cellulase activities. Pure Applied Chemistry 59: 257-268.
Hardin,
M. 2004. Solid state fermentation for bioconversion of biomass: Design of
bioreactors for solid state fermentation. In Concise Encyclopedia of Bioresource Technology, edited by Pandey, A.
Binghamton, New York: Food Product Press & The Haworth Reference Press. pp. 679-689.
Kumar,
P.K.R. & Lonsane, B.K. 1987. Potential of fed batch culture in solid state fermentation for
production of gibberellic acid. Biotechnology Letter 9: 179-182.
Kumar,
P.K.R. & Lonsane, B.K. 1988. Batch and fed batch solid state fermentation: Kinetics of cell growth,
hydrolytic enzymes production and gibberellic acid production. Process
Biochemistry 23: 43-47.
Laukevics,
J.J., Aspite, A.F., Viestures,
H.E. & Tengerdy, R.P.
1984. Solid state fermentation of wheat straw for production
of fungal protein. Biotechnology and Bioengineering 26:
1465-1474.
Lee,
C.K., Darah, I. and Ibrahim, C.O. 2015. Governing parameters on xylanase production using developed
bioreactor. Malaysian Journal of Microbiology 11(1): 81-92.
Lee,
C.K., Darah, I. & Ibrahim, C.O. 2013. Investigation of newly developed solid state fermenter on carboxymethyl cellulase production. Malaysian Journal of Microbiology 9(3): 227-236.
Lee,
C.K., Darah, I. & Ibrahim, C.O. 2011. Production and optimization of cellulase enzyme using Aspergillus nigerUSM
AI 1 and comparison with Trichoderma reesei via solid
state fermentation system. Biotechnology Research International 2011:
Article ID. 658493. doi:10.4061/2011/658493.
Lee,
C.K., Pang, P.K., Darah, I. &
Ibrahim, C.O. 2007. Comparative
evaluation of cellulase and xylanase
production by Aspergillus niger
USM AI 1 in solid state fermentation using tray and bioreactor
systems. Abstract of the International Symposium in Science and Technology.
Collaboration between ASEAN Countries in Environment
and Life Science. 31st-1st August 2007,
Kansai University, Osaka, Japan. pp: PO-16.
Lonsane,
B.K., Ghildyal, N.P., Budiatman,
S. & Ramakrishna, S.V. 1985. Engineering aspects of solid state fermentation. Enzyme
and Microbial Technology 7: 258-265.
Lonsane,
B.K., Durand, A., Renaud, R., Almanza, S., Maratray,
J., Desgranges, C., Crooke, P.S., Hong, K., Maloney,
C.W. & Tanner, R.D. 1992a. Product
leaching and downstream processing. In Solid Substrate Cultivation, edited
by Doelle, H.W., Mitchell, D.A. & Rolz, C.W. London: Elsevier
Science Publishers. pp.147-171.
Lonsane, B.K., Saucedo-Castaneda, G., Raimbault, M., Roussos, S., Viniegra-Gonzalez,
G., Ghildyal, N.P., Ramakrishna, M. & Krishnaiah, M.M. 1992b. Scale up strategies for solid state
fermentation systems. Process Biochemistry 27: 259-273.
Luth,
P. & Eiben, U. 1999. Solid-state Fermenter and Method for
Solid-state Fermentation. World
patent No. WO 99/57239.
Matsuno,
R., Adachi, S. & Uosaki, H. 1993. Bioreduction of prochiral ketones with yeast cells cultivated in a
vibrating air-solid fluidized bed fermentor. Biotechnology
Advance 11: 509-517.
Mitchell,
D.A., Berovic, M. & Krieger, N. 2006a. Introduction to solid state fermentation bioreactors. In Solid
State Bioreactors: Fundamentals of Design and Operation, edited by
Mitchell, D.A., Krieger, N. and Berovi, M. Berlin
Heidelberg Germany: Springer-Verlag. pp. 33-44.
Mitchell,
D.A., Meien, O.F.V., Luz, Jr. L.F.L. & Berovic, M. 2006b. The scale up challenge
for SSF Bioreactors. In Solid State Bioreactors: Fundamentals of
Design and Operation, edited by Mitchell, D.A., Krieger, N. & Berovi, M. Berlin Heidelberg Germany: Springer-Verlag. pp. 57-64.
Mitchell,
D.A., Krieger, N., Berovic, M. & Luz Jr. L.F.L.
2006c. Group IVa: Continuously-mixed, forcefully
aerated bioreactors. In Solid State Bioreactors: Fundamentals of Design and
Operation, edited by Mitchell, D.A., Krieger, N. & Berovi,
M. Berlin Heidelberg Germany: Springer-Verlag. pp.
115-128.
Mitchell,
D.A., Krieger, N., Stuart, D.M. & Pandey, A. 2000b. New developments in solid state fermentation II. Rational
approaches to the design, operation and scale up of bioreactors. Process
Biochemistry 35: 1211-1225.
Mitchell,
D.A., Von Meien, O.F. & Krieger, N. 2003. Recent developments in modeling of solid state fermentation: Heat and mass
transfer in bioreactors. Biochemical Engineering Journal 13: 137-147.
Nagel,
F.J.I., Tramper, J., Bakker, M.S.N. & Rinzema, A.
2001. Model for online moisture content control during solid state
fermentation. Biotechnology and Bioengineering 72(2): 231-243.
Oberoi,
H.S., Chavan, Y., Bansai,
S. & Dhilon, G.S. 2010. Production of cellulases through solid
state fermentation using kinnow pulp as a major
substrate. Food Bioprocess Technology 3(4): 528-536.
Pandey,
A. 2003. Solid state fermentation. Biochemical
Engineering Journal 13: 81-84.
Pandey,
A. 1994. Solid-state fermentation: An overview. In Solid State Fermentation, edited by Pandey, A. New
Delhi: Wiley. pp. 3-10.
Pandey,
A. 1992. Recent process developments in
solid state fermentation. Process Biochemistry 27: 109-117.
Pandey,
A. 1991. Aspects of fermenter design for solid state
fermentations. Process Biochemistry 26: 355-361.
Pandey,
A., Soccol, C.R. & Mitchell, D 2000a. New developments in solid state fermentation. I: Processes
and products. Process Biochemistry 35: 1153-1169.
Pang,
P.K., Darah, I., Poppe, L. Szakacs, G. & Ibrahim, C.O. 2006. Xylanase production by local isolate, Trichoderma sp. FETL
C3-2 via solid-state fermentation using agricultural wastes as substrates. Malaysian Journal of Microbiology 2: 7-14.
Perez-Guerra,
N., Torrado-Agrasar, A., Lopez-Macias, C. & Pastrana, L. 2003. Main characteristic and applications of solid substrate
fermentation. Electronic Journal of Environmental, Agricultural and
Food Chemistry 2(3): 343-350.
Raimbault, M.
1998. General and microbiological aspects of solid substrate
fermentation. EJB Electronic Journal of Biotechnology 1(3):
174-188.
Raimbault,
M. & Alazard, D. 1980. Culture method to study fungal growth in solid fermentation. European Journal of Applied Microbiology and Biotechnology 9: 199-209.
Rathbun,
B.L. & Shuler, M.L. 1983. Heat and mass transfer effects
in static solid-substrate fermentations: Design of fermentation chambers. Biotechnology
and Bioengineering 25: 929-238.
Smits,
J.P., Rinzema, A., Tramper, J., van Sonsbeek, H.M. & Knol, W.
1996. Solid-state fermentation of wheat bran by Trichoderma reesei QM9414: Substrate composition changes, C balance, enzyme production, growth and kinetics. Applied Microbiology and
Biotechnology 46: 489-496.
Suryanarayan,
S. & Mazumdar, K. 2000. Solid State Fermentation. World Patent no. WO 00/29544.
Suryanarayan, S.
2003. Current industrial practice in solid state fermentations for secondary
metabolite production: The Biocon India experience. Biochemistry
Engineering Journal 13: 189-195.
Swift,
J. 1972. The estimation of mycelial biomass
by determination of the hexosamine
content of wood tissues decayed by fungi. Soil
Biological and Biochemistry 5: 321-322.
Tao,
S., Zuohu, L. & Deming, L. 1996. A novel design of solid state fermenter and its evaluation for cellulase production by Trichoderma viride SL-1. Biotechnology Techniques 10(11): 889-894.
Xu,
Y.X., Li, Y.L., Xu, S.C., Liu, Y., Wang, X. & Tang, J.W. 2008. Improvement of xylanase production by Aspergillus nigerXY-1 using response surface methodology for
optimizing the medium composition. Journal of Zhejiang University Science B 7:
558-566.
*Corresponding author; email: cklee1311@yahoo.co.uk