Sains Malaysiana 46(8)(2017): 1269–1278

http://dx.doi.org/10.17576/jsm-2017-4608-12

 

Hydrolysis of Residual Starch from Sago Pith Residue and Its Fermentation to Bioethanol

(Hidrolisis Sisa Kanji daripada Hampas Sagu serta Fermentasinya kepada Bioetanol)

 

NURUL ADELA BUKHARI1*, SOH KHEANG LOH1, NASRIN ABU BAKAR1 & MAIZAN ISMAIL2

 

1Energy and Environment Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Crop and Livestock Integration,, Integration Research and Extension Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 14 July 2015/Accepted: 24 January 2017

 

ABSTRACT

Utilisation of sago pith residue (SPR) for fermentable sugar production using both acid and enzymatic hydrolysis was studied. In acid hydrolysis, the effect of solid and acid concentrations, temperature and reaction time was optimised. The effect of enzyme dosage was studied on enzymatic hydrolysis of SPR. Higher yield and conversion of 0.73 g g-1 (96% conversion) was achieved by treating 6% (w v-1) of SPR with 1% (v v-1) H2SO4 at 125°C for 90 min as compared to 0.61 g g-1 (79% conversion) using 40 U g-1 biomass of Aspergillus niger amyloglucosidase incubated at 60°C and pH4 for 48 h. The fermentation of acid hydrolysate of SPR demonstrated that high ethanol yield of 98% can be achieved without supplementation of nitrogen and nutrients. The complete process showed that 470 L of bioethanol could be produced from 1 tonne of SPR. This figure makes SPR an ideal raw material for bio-conversion into bioethanol or other value-added products.

 

Keywords: Acid hydrolysis; bioethanol; enzymatic hydrolysis; fermentation; sago pith residue

 

ABSTRAK

Penggunaan hampas sagu (SPR) untuk penghasilan gula menggunakan hidrolisis asid dan enzim telah dikaji. Dalam hidrolisis asid, kesan kepekatan pepejal dan asid, suhu dan masa tindak balas telah dioptimumkan. Kesan dos enzim pula dikaji dalam hidrolisis enzim terhadap SPR. Hasil yang lebih tinggi dengan penukaran sebanyak 0.73 g g-1 (96% penukaran) telah dicapai dengan merawat 6% (w v-1) hampas sagu menggunakan 1% (v v-1) H2SO4 pada 125°C selama 90 min berbanding dengan 0.61 g g-1 (79% penukaran) menggunakan 40 U g-1 amiloglukosidase Aspergillus niger yang dieram pada 60°C, pH4 selama 48 jam. Fermentasi hidrolisat asid hampas sagu menunjukkan hasil etanol yang tinggi iaitu sebanyak 98% boleh dicapai tanpa penambahan nitrogen dan nutrien. Proses bio-penukaran lengkap menunjukkan 470 L bioetanol boleh dihasilkan daripada 1 tan hampas sagu. Hasil yang diperoleh ini mencadangkan hampas sagu sebagai bahan mentah yang sesuai untuk bio-penukaran kepada bioetanol atau produk nilai tambah yang lain.

 

Kata kunci: Bioetanol; fermentasi; hampas sawit; hidrolisis asid; hidrolisis enzim

REFERENCES

Awg-Adeni, D.S., Bujang, K.B., Hassan, M.A. & Abd-Aziz, S. 2013. Recovery of glucose from residual starch of sago hampas for bioethanol production. BioMed Research International. 2013: Article ID. 935852. http://dx.doi. org/10.1152/2013/935852.

Cecil, J. 2002. The development of technology for the extraction of sago. In New Frontiers of Sago Palm Studies, edited by Kainuma, K., Okazaki, M., Toyoda, Y. & Cecil, J.E. Proceedings of the International Symposium on Sago (SAGO 2001). Tokyo: Universal Academy Press. pp. 83-91.

Chen, M., Xia, L. & Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. International Biodeterioration & Biodegredation59: 85-89.

Flores, D.M. 2009. The green potentials of sago palm and sago starch. The National Biotech Week, Scientific Forum, Nido-Fortified Science Discovery Center, SM Mall of Asia. November 24, 2009.

Gupta, R., Mehta, G. & Kuhad, R.C. 2012. Fermentation of pentose and hexose sugars from corncob, a low cost feedstock into ethanol. Biomass and Bioenergy 47: 334-3410.

Gusmayanti, E., Maherawati, Krisnohadi, A. & Sholahuddin. 2010. Simulating bioethanol production from sago palm grown on peatland. AFITA 2010 International Conference, the Quality Information for Competition Agricultural Based Production System and Commerce.

Hebeda, R.E., Nagodawithana, T. & Reed, G. 1993. Starches, sugars, and syrups. In Enzymes in Food Processing, 3rd ed., edited by Nagodawithana, T. & Reed, G. New York: Academic Press Inc. pp. 321-343.

Hii, S.L., Tan, J.S., Ling, T.C & Arbakariya, A. 2012. Pulullanse: Role in starch hydrolysis and potential industrial applications. Enzyme Research 2012: Article ID. 921362. doi:10.1155/2012/921362.

Hisajima, S. 1994. Propagation of sago palm plant. Nippon Nogei Kagaku Kaishi (Japan) 68(4): 833-836.

Khawla, B.J., Sameh, M., Imen, G., Donyes, F., Dhouha, G., Raoudha, E.G. & Oumema, N.E. 2014. Potato peel as feedstock for bioethanol production: A comparison of acidic and enzymatic hydrolysis. Industrial Crops and Products 52: 144-149.

Kootstra, A.M.J., Beeftink, H.H., Scott, E.L. & Sanders, J.P.M. 2009. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochemical Engineering Journal 46: 126-131.

Kuhad, R.C., Gupta, R., Khasa, Y.P. & Singh, A. 2010. Bioethanol production from Lantana camara(red sage): Pretreatment, saccharification and fermentation. Bioresource Technology 101(21): 8348-8354.

Kumneadklang, S., Larpkiattaworn, S., Niyasom, C. & O-Thong, S. 2015. Bioethanol production from oil palm frond by simultaneous saccharification and fermentation. Energy Procedia 79: 784-790.

Kumoro, A.C., Ngoh, G.C., Hasan, M., Ong, C.H. & Teoh, E.C. 2008. Conversion of fibrous sago (Metroxylon sagu) waste into fermentable sugar via acid and enzymatic hydrolysis. Asian Journal of Scientific Research 1: 412-420.

Nurul-Adela, B.; Nasrin, A.B. & Loh, S.K. 2016. Palm oil mill effluent as a low-cost substrate for bioflocculant production by Bacillus marisflavi NA8. Bioresour. Bioprocess 3: 20.

Ozawa, T., Takahiro, O. & Osama, N. 1996. Hemicelluloses in the fibrous residue of sago palm. Proceedings of the Sixth International Sago Symposium, Pekan Baru, Indonesia.

Polakovič, M. & Bryjak, J. 2004. Modelling of potato starch saccharication by an Aspergillus nigerglucoamylase. Biochemical Engineering Journal 18(1): 57-63.

Sarawak Agriculture Statistics 2013. http://www.doa.sarawak. gov.my.

Singhal, R.S., Kennedy, J.F., Gopalakrishnan, S.M., Kaczmarek, A., Knill, C.J. & Akmar, P.F. 2008. Industrial production, processing, and utilization of sago palm-derived products. Carbohydrate Polymer 72: 1-20.

Siti Mazlina, M.K., Siti Norfadhillah, M., Siti Aslina, H. & Fakrul Razi, A. 2007. Improvement on sago flour processing. International Journal of Engineering and Technology 4: 8-14.

Vickineswary, S. & Shim, Y.L. 1996. Growth and starch degrading activity of Myceliophthora thermophilain solid-substrate fermentation of sago hampas. Journal of Molecular Biology and Biotechnology 42: 85-89.

Vincent, M., Senawi, B.R.A., Esut, E., Norizawati, M.N. & Dayang Salwani, A.A. 2015. Sequential saccharification and simultaneous fermentation (SSSF) of sago hampas for the production of bioethanol. Sains Malaysiana44(6): 899-904.

 

*Corresponding author; email: adela@mpob.gov.my

 

 

 

 

previous