Sains Malaysiana 46(8)(2017): 1269–1278
http://dx.doi.org/10.17576/jsm-2017-4608-12
Hydrolysis of Residual Starch from Sago Pith Residue and Its
Fermentation to Bioethanol
(Hidrolisis Sisa Kanji daripada Hampas Sagu serta Fermentasinya kepada Bioetanol)
NURUL ADELA BUKHARI1*, SOH KHEANG LOH1, NASRIN ABU BAKAR1 & MAIZAN ISMAIL2
1Energy and Environment
Unit, Engineering and Processing Research Division, Malaysian Palm Oil Board
(MPOB), 6, Persiaran Institusi,
Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
2Crop and Livestock
Integration,, Integration Research and Extension Division, Malaysian Palm Oil
Board (MPOB), 6, Persiaran Institusi,
Bandar Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received: 14 July 2015/Accepted: 24 January 2017
ABSTRACT
Utilisation of sago pith residue (SPR) for fermentable sugar
production using both acid and enzymatic hydrolysis was studied. In acid
hydrolysis, the effect of solid and acid concentrations, temperature and
reaction time was optimised. The effect of enzyme
dosage was studied on enzymatic hydrolysis of SPR.
Higher yield and conversion of 0.73 g g-1 (96%
conversion) was achieved by treating 6% (w v-1)
of SPR with 1% (v v-1) H2SO4 at
125°C for 90 min as compared to 0.61 g g-1 (79%
conversion) using 40 U g-1 biomass
of Aspergillus niger amyloglucosidase incubated at 60°C and pH4 for 48 h. The fermentation of acid
hydrolysate of SPR demonstrated that high ethanol
yield of 98% can be achieved without supplementation of nitrogen and nutrients.
The complete process showed that 470 L of bioethanol could be produced from 1 tonne of SPR. This figure makes SPR an
ideal raw material for bio-conversion into bioethanol or other value-added
products.
Keywords: Acid
hydrolysis; bioethanol; enzymatic hydrolysis; fermentation; sago pith residue
ABSTRAK
Penggunaan hampas sagu
(SPR)
untuk penghasilan
gula menggunakan hidrolisis asid dan enzim telah
dikaji. Dalam hidrolisis asid, kesan kepekatan pepejal dan asid,
suhu dan
masa tindak balas telah
dioptimumkan. Kesan
dos enzim pula dikaji
dalam hidrolisis enzim terhadap SPR.
Hasil yang lebih tinggi dengan penukaran
sebanyak 0.73 g g-1
(96% penukaran) telah
dicapai dengan merawat 6% (w v-1) hampas
sagu menggunakan
1% (v v-1)
H2SO4 pada 125°C selama 90 min
berbanding dengan 0.61 g g-1
(79% penukaran) menggunakan
40 U g-1
amiloglukosidase Aspergillus
niger yang
dieram pada 60°C, pH4 selama 48
jam. Fermentasi
hidrolisat asid hampas sagu menunjukkan
hasil etanol
yang tinggi iaitu sebanyak
98% boleh dicapai
tanpa penambahan nitrogen dan nutrien. Proses bio-penukaran lengkap menunjukkan 470 L bioetanol
boleh dihasilkan daripada 1 tan hampas sagu. Hasil yang diperoleh ini mencadangkan
hampas sagu
sebagai bahan mentah
yang sesuai untuk
bio-penukaran kepada bioetanol atau produk nilai tambah
yang lain.
Kata kunci: Bioetanol; fermentasi; hampas sawit; hidrolisis asid; hidrolisis enzim
REFERENCES
Awg-Adeni, D.S., Bujang, K.B., Hassan, M.A.
& Abd-Aziz, S. 2013. Recovery of glucose from residual starch of
sago hampas for bioethanol production. BioMed Research International. 2013: Article ID. 935852.
http://dx.doi. org/10.1152/2013/935852.
Cecil, J. 2002. The development of technology
for the extraction of sago. In New Frontiers of
Sago Palm Studies, edited by Kainuma, K.,
Okazaki, M., Toyoda, Y. & Cecil, J.E. Proceedings of the International
Symposium on Sago (SAGO 2001). Tokyo: Universal Academy Press. pp.
83-91.
Chen, M., Xia, L. & Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic
hydrolysate. International Biodeterioration & Biodegredation59: 85-89.
Flores, D.M. 2009. The green potentials
of sago palm and sago starch. The National Biotech Week,
Scientific Forum, Nido-Fortified Science Discovery
Center, SM Mall of Asia. November 24, 2009.
Gupta, R., Mehta, G. & Kuhad, R.C.
2012. Fermentation of pentose and hexose sugars from
corncob, a low cost feedstock into ethanol. Biomass and Bioenergy 47:
334-3410.
Gusmayanti, E., Maherawati, Krisnohadi,
A. & Sholahuddin. 2010. Simulating bioethanol production from sago palm grown on peatland. AFITA 2010 International Conference, the Quality Information for
Competition Agricultural Based Production System and Commerce.
Hebeda, R.E., Nagodawithana, T. & Reed,
G. 1993. Starches, sugars, and syrups. In Enzymes
in Food Processing, 3rd ed., edited by Nagodawithana,
T. & Reed, G. New York: Academic
Press Inc. pp. 321-343.
Hii, S.L., Tan, J.S., Ling, T.C & Arbakariya,
A. 2012. Pulullanse:
Role in starch hydrolysis and potential industrial applications. Enzyme
Research 2012: Article ID. 921362.
doi:10.1155/2012/921362.
Hisajima, S. 1994. Propagation of sago palm plant. Nippon Nogei Kagaku Kaishi (Japan) 68(4):
833-836.
Khawla, B.J., Sameh, M., Imen,
G., Donyes, F., Dhouha, G., Raoudha, E.G. & Oumema,
N.E. 2014. Potato peel as feedstock for bioethanol production: A comparison
of acidic and enzymatic hydrolysis. Industrial Crops and Products 52:
144-149.
Kootstra,
A.M.J., Beeftink, H.H., Scott, E.L. & Sanders,
J.P.M. 2009. Comparison of dilute mineral and organic acid pretreatment
for enzymatic hydrolysis of wheat straw. Biochemical Engineering
Journal 46: 126-131.
Kuhad,
R.C., Gupta, R., Khasa, Y.P. & Singh, A. 2010. Bioethanol production
from Lantana camara(red sage): Pretreatment, saccharification and fermentation. Bioresource Technology 101(21): 8348-8354.
Kumneadklang, S., Larpkiattaworn, S., Niyasom, C.
& O-Thong, S. 2015. Bioethanol production from oil palm
frond by simultaneous saccharification and
fermentation. Energy Procedia 79: 784-790.
Kumoro,
A.C., Ngoh, G.C., Hasan, M., Ong, C.H. & Teoh,
E.C. 2008. Conversion of fibrous sago (Metroxylon sagu) waste into fermentable sugar via acid and
enzymatic hydrolysis. Asian Journal of Scientific Research 1:
412-420.
Nurul-Adela,
B.; Nasrin, A.B. & Loh,
S.K. 2016. Palm oil mill effluent as a low-cost substrate for bioflocculant production by Bacillus marisflavi NA8. Bioresour. Bioprocess 3: 20.
Ozawa,
T., Takahiro, O. & Osama, N. 1996. Hemicelluloses
in the fibrous residue of sago palm. Proceedings
of the Sixth International Sago Symposium, Pekan
Baru, Indonesia.
Polakovič, M.
& Bryjak, J. 2004. Modelling of potato starch saccharication by an Aspergillus nigerglucoamylase. Biochemical
Engineering Journal 18(1): 57-63.
Sarawak
Agriculture Statistics 2013. http://www.doa.sarawak. gov.my.
Singhal,
R.S., Kennedy, J.F., Gopalakrishnan, S.M., Kaczmarek, A., Knill, C.J. & Akmar, P.F. 2008. Industrial
production, processing, and utilization of sago palm-derived products. Carbohydrate
Polymer 72: 1-20.
Siti Mazlina, M.K., Siti Norfadhillah, M., Siti Aslina, H. & Fakrul Razi, A. 2007. Improvement on sago flour
processing. International Journal of Engineering and Technology 4: 8-14.
Vickineswary, S.
& Shim, Y.L. 1996. Growth and starch degrading activity of Myceliophthora thermophilain solid-substrate fermentation of
sago hampas. Journal of Molecular Biology and
Biotechnology 42: 85-89.
Vincent,
M., Senawi, B.R.A., Esut,
E., Norizawati, M.N. & Dayang
Salwani, A.A. 2015. Sequential
saccharification and simultaneous fermentation (SSSF) of
sago hampas for the production of
bioethanol. Sains Malaysiana44(6):
899-904.
*Corresponding
author; email: adela@mpob.gov.my