Sains Malaysiana 46(8)(2017): 1323–1331
http://dx.doi.org/10.17576/jsm-2017-4608-19
Control of Microbiologically
Influenced Corrosion Using Ultraviolet Radiation (Kawalan Terhadap Kakisan Dipengaruhi Mikrobiologi Menggunakan
Radiasi Ultralembayung)
AKRIMA ABU BAKAR, MUHAMMAD KHAIROOL FAHMY MOHD ALI, NORHAZILAN MD. NOOR*, NORDIN YAHAYA, MARDHIAH ISMAIL
& AHMAD SAFUAN A. RASHID
Faculty
of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor, Johor Darul Takzim, Malaysia
Received: 3
July 2016/Accepted: 23 January 2017
ABSTRACT
Baram Delta Operation had been producing oil and gas since 1960's and
serious pipelines failure was reported in the year of 2005. The
final investigation has concluded that one of the species of bacteria
that has been identified to cause microbiologically influenced
corrosion, specifically known as sulfate reducing bacteria (SRB) was found to be one of the
potential contributing factors to the incidents. This work investigates
the potential use of ultraviolet (UV) radiation to inhibit the SRB
consortium that was cultivated from the crude oil
in one of the main trunk lines at Baram
Delta Operation, Sarawak, Malaysia. The impact of UV exposure to bio-corrosion conditions
on carbon steel coupon in certain samples for 28 days was discussed
in this study. The samples were exposed to UV radiation
based on variations of parameters, namely: time of UV exposure;
and power of UV lamp. The significant changes on the amount of turbidity
reading and metal loss of the steel coupon were recorded before
and after experiment. The results showed that SRB growth
has reduced rapidly for almost 90% after the UV exposure
for both parameters as compared to the abiotic samples. Metal
loss values were also decreased in certain exposure condition.
Additionally, field emission scanning electron microscopy (FESEM) coupled with energy dispersive
spectroscopy (EDS) was performed to observe the biofilm
layer formed on the metal surface after its exposure to SRB.
The evidence suggested that the efficiency of UV treatment
against SRB growth could be influenced by the particular factors
studied.
Keywords: Biocorrosion; sulfate reducing bacteria (SRB);
ultraviolet radiation
ABSTRAK
Operasi Delta Baram (BDO) telah beroperasi bagi menghasilkan pengeluaran minyak dan gas semenjak tahun 1960 dan sistem saluran paipnya telah dilaporkan mengalami kegagalan serius pada tahun 2005. Kesimpulan daripada siasatan akhir mendapati salah satu daripada spesies bakteria telah dikenal pasti menyebabkan biokakisan, dikenali sebagai bakteria penurun sulfat (SRB) merupakan faktor penyumbang kepada insiden tersebut. Kajian ini menganalisa potensi penggunaan sinaran ultralembayung (UV) sebagai perencat kepada pertumbuhan SRB konsortium yang telah diasingkan daripada minyak mentah di salah satu saluran paip utama di BDO,
Sarawak, Malaysia. Kesan sinaran UV terhadap pertumbuhan biokakisan pada kupon keluli karbon telah dikaji selama 28 hari dan keputusannya dibincangkan. Sampel dikaji berdasarkan parameter yang berbeza, iaitu: masa pendedahan kepada sinaran UV; dan nilai kuasa lampu UV. Sampel telah didedahkan kepada sinaran UV berdasarkan variasi parameter, iaitu: masa pendedahan UV; dan kuasa lampu UV. Nilai bacaan kekeruhan dan kehilangan logam kupon keluli diambil sebelum dan selepas pendedahan. Hasil kajian menunjukkan bahawa pertumbuhan SRB telah berkurang dengan pesat menghampiri nilai 90% selepas pendedahan UV dijalankan untuk kedua-dua parameter berbanding sampel abiotik. Nilai pengurangan logam juga telah menurun dalam keadaan pendedahan UV yang tertentu. Perubahan terhadap nilai bacaan kekeruhan sampel dan kehilangan berat kupon keluli dicatat. Selain itu, ujian mikroskopi pancaran medan elektron imbasan (FESEM) dan ujian spektroskopi tenaga serakan (EDS)
juga dijalankan untuk melihat lapisan biofilem yang terbentuk di atas permukaan logam selepas pendedahannya kepada aktiviti SRB. Hasil kajian mendapati bahawa kecekapan rawatan UV terhadap pertumbuhan SRB boleh dipengaruhi oleh faktor-faktor tertentu yang dikaji.
Kata kunci: Bakteria penurun sulfat; biokakisan; sinaran ultralembayung
REFERENCES
Abdullah,
A., Yahaya, N., Noor, N.M. & Rasol,
R.M. 2014. Microbial corrosion of API 5L
X70 carbon steel by ATCC 7757 and consortium of SRB. Journal
of Chemistry 2014: Article ID. 130345. pp. 1-7.
Alabbas, F., Kakpovbia, A., Spear, J.R. & Olson, D.L. 2012. Effects of sulfate reducing bacteria on the corrosion of X-65
pipeline carbon steel. Paper ID. C2012-0001140. NACE International. pp. 1-14.
AlAbbas,
F.M. 2013. An investigation of microbial diversity in crude oil & seawater
injection system and microbiologically influenced corrosion (MIC) of linepipe steels under different exposure conditions. ProQuest Dissertations and Thesis. Thesis PhD.
Colorado School of Mines (Unpublished).
Allison,
P.W., Clough, D., Park, B., Vance, I. & Thompson, M.J. 2008. The investigation of microbial activity in an offshore oil
production pipeline system and the development of strategies to manage the
potential for microbially influenced corrosion. Paper No. 08651. Nace International Corrosion Conference and Expo. pp.
1-17.
Almahamedh,
H.H., Spear, J.R., Olson, D.L., Williamson, C. & Mishra, B. 2011. Identification of microorganisms and their effects on corrosion of carbon
steels pipelines. Paper No. 11231. Nace International Corrosion Conference and Expo. Houston, TX. pp. 1-11.
Beavers,
J.A. & Thompson, N.G. 2006. External
corrosion of oil and natural gas pipelines. ASM Handbook. Corrosion: Environments and Industries 13C: 1015-1026.
Chang,
Y.J., Chang, Y.T., Hung, C.H., Lee, J.W., Liao, H.M. & Chou, H.L. 2014. Microbial community analysis of anaerobic bio-corrosion in
different ORP profiles. International Biodeterioration & Biodegradation 95: 93-101.
Chang,
Y.J., Hung, C.H., Lee, J.W., Chang, Y.T., Lin, F.Y. & Chuang, C.J. 2015. A
study of microbial population dynamics associated with corrosion rates
influenced by corrosion control materials. International Biodeterioration & Biodegradation 102: 330-338.
Cheung,
C.W.S., Beech, I.B., Campbell, S.A., Satherley, J.
& Schiffrin, D.J. 1995. The effect of industrial biocides on sulphate-reducing
bacteria under high pressure. International Biodeterioration & Biodegradation 33(4): 299-310.
Clark,
J.B., Luppens, J.C., Co, P., Tucker, P.T. & Petru, P. 1984. Using ultraviolet
radiation for controlling sulfate-reducing bacteria in injection water. Paper ID. 13245. 59th Annual Technical Conference and Exhibition. Texas.
Comanescu,
I., Taxen, C. & Melchers, R.E. 2012. Assessment of mic in carbon steel water injection pipelines. Paper No. 155199. Society of Petroleum Engineers - SPE
International Conference and Exhibition on Oilfield Corrosion. pp. 227- 234.
Gloe,
L., Neal, G. & Kleinwolterink, K. 2010. Ultraviolet light disinfection of fracturing fluids. Proceedings of SPE International Health, Safety and
Environmental Conference. pp. 1-7.
Ismail,
M., Noor, N.M., Yahaya, N., Abdullah, A., Rasol, R.M. & A. Rashid, A.S. 2014. Effect of pH and temperature on corrosion of steel subject to
sulfate reducing bacteria. Journal of Environmental Science and
Technology 7(4): 209-217.
Javaherdashti, R.
2008. Microbiologically Influenced Corrosion.
An Engineering Insight. Verlag
London Limited. New York: Springer. pp. 29-71.
Lawal,
O., Shannon, K., Gloe, L., King, K., Warren, W., Hargy, T. & Fong, F. 2010. Ultraviolet disinfection effectively controls oilfield sulfate reducing
bacteria. IUVA News, September. pp. 17-20.
Little,
B.J. & Lee, J.S. 2009. Microbiologically
influenced corrosion. Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley
& Sons, Inc.
Maxwell,
S. 2005. Controlling corrosive biofilms by the application of
biocides. Paper ID. SPE93172. SPE International
Symposium on Oilfield Corrosion. pp. 1-8.
Maxwell,
S. & Campbell, S. 2006. Monitoring the mitigation of MIC
risk in pipelines. Paper No. 06662. Corrosion NACE
Expo, 61st Annual Conference & Exposition. pp. 1-16.
McKinney,
C.W. & Pruden, A. 2012. Ultraviolet disinfection of antibiotic resistant bacteria and their
antibiotic resistance genes in water and wastewater. Environ. Sci.
Technol. 46(24): 13393-13400.
Melchers,
R.E. & Jeffrey, R.J. 2008. Probabilistic models for steel
corrosion loss and pitting of marine infrastructure. Reliability Engineering
& System Safety 93(3): 423-432.
Sarioǧlu,
F., Javaherdashti, R. & Aksöz,
N. 1997. Corrosion of a drilling pipe steel in an environment containing sulphate-reducing
bacteria. International Journal of Pressure Vessels and Piping 73(2):
127-131.
Wang,
J., Yang, F., Yuan, X., Liu, B., Wu, H. & Sui, X. 2005. Successfully sterilizing the sulfate bacteria with ultraviolet
radiation in produced-water treatment in daqing oilfield. Paper ID. SPE 93148. Asia Pacific Oil & Gas Conference and Exhibition.
*Corresponding author; email: norhazilan@utm.my