Sains Malaysiana 46(8)(2017): 1347–1353

http://dx.doi.org/10.17576/jsm-2017-4608-22

 

Estimation of Concentration Parameter for Simultaneous Circular Functional Relationship Model Assuming Unequal Error Variance

(Anggaran Parameter Kepekatan untuk Model Hubungan Fungsian Membulat Serentak dengan Andaian Ralat Varians tak Sama)

 

NURKHAIRANY AMYRA MOKHTAR1, YONG ZULINA ZUBAIRI2* & ABDUL GHAPOR HUSIN1

 

1Faculty of Defence Sciences and Technology, National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

2Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 28 September 2016/ Accepted: 26 January 2017

ABSTRACT

In this study, we propose the estimation of the concentration parameter for simultaneous circular functional relationship model. In this case, the variances of the error term are not necessarily equal and the ratio of the concentration parameter λ = is not necessarily 1. The modified Bessel function was expended by using the asymptotic power series and it became a cubic equation of κ. From the cubic equation of κ, the roots were obtained by using the polyroot function in SPlus software. Simulation study was done to study the mean, estimated bias, absolute relative estimated bias, estimated standard error and estimated root mean square error of the estimation of the concentration parameter. From the simulation study, large concentration parameter and sample size show that the estimated concentration parameter has smaller bias. Also, an illustration to a real wind and wave data set is given to show its practical applicability.

 

Keywords: Circular variables; concentration parameter; simultaneous circular functional relationship model; unequal error variance

 

ABSTRAK

Dalam kajian ini, kami ingin mencadangkan anggaran parameter kepekatan untuk model hubungan fungsian membulat serentak. Dalam kes ini, perbezaan tempoh ralat tidak semestinya sama dan nisbah parameter λ = kepekatan tidak semestinya 1. Fungsi Bessel yang diubah suai telah dimajukan dengan menggunakan siri kuasa asimptot dan ia menjadi satu persamaan kubik. Daripada persamaan kubik, punca diperoleh dengan menggunakan fungsi polyroot dalam perisian statistic SPlus. Kajian simulasi telah dilakukan untuk mengkaji purata, anggaran berat sebelah, mutlak relatif berat sebelah dianggarkan, anggaran ralat piawai dan dianggarkan punca purata ralat kuasa dua daripada anggaran parameter kepekatan. Daripada kajian simulasi, parameter kepekatan dan sampel saiz yang besar menunjukkan anggaran parameter kepekatan mempunyai berat sebelah yang lebih kecil. Ilustrasi menggunakan data sebenar angin dan gelombang diberikan untuk menunjukkan kesesuaian praktikal.

 

Kata kunci: Model hubungan fungsian membulat serentak; parameter kepekatan; pemboleh ubah membulat; ralat varians tak sama

REFERENCES

Batschelet, E. 1981. Circular Statistic in Biology. New York: Academic Press.

Best, D.J. & Fisher, N.I. 1979. Efficient simulation of the von Mises distribution. Applied Statistics 28(2): 152-157.

Caires, S. & Wyatt, L.R. 2003. A linear functional relationship model for circular data with an application to the assessment of ocean wave measurement. American Statistical Association and the Internal Biometric Society Journal of Agricultural, Biological and Environmental Statistics 8(2): 153-169.

Dobson, A.J. 1978. Simple approximation for the von Mises concentration statistic. Applied Statistics 27(3): 345-347.

Fisher, N.I. 1993. Statistical Analysis of Circular Data. Cambridge: Cambridge University Press.

Hassan, S.F., Hussin, A.G. & Zubairi, Y.Z. 2012. Improved efficient approximation of concentration parameter and confidence interval for circular distribution. ScienceAsia 38: 118-124.

Hassan, S.F., Hussin, A.G. & Zubairi, Y.Z. 2010. Estimation of functional relationship model for circular variables and its application in measurement problem. Chiang Mai J. Sci. 37(2): 195-205.

Hussin, A.G., Hassan, S.F. & Zubairi, Y.Z. 2010. A statistical method to describe the relationship of circular variables simultaneously. Pakistan Journal of Statistics 26(4): 593-607.

Hussin, A.G., Hassan, S.F., Zubairi, Y.Z., Zaharim, A. & Sopian, K. 2009. Approximation of error concentration parameter for simultaneous circular functional model. European Journal of Scientific Research 27(2): 258-263.

Jammaladaka, S.R. & Sengupta, A. 2001. Topics in Circular Statistics. World Scientific Publishing.

Kendall, D.G. 1974. Pole-seeking brownian motion and bird. Journal of the Royal Statistical Society. Series B (Methodological) 36(3): 365-417.

Mardia, K.V. 1972. Statistics of Directional Data. London and New York: Academic Press.

Mardia, K.V. & Jupp, P.E. 2000. Directional Statistics. New York: John Wiley & Sons.

Mokhtar, N.A. 2016. Simultaneous functional relationship model and outlier detection using clustering technique for circular variables. MSc Thesis. Universiti Pertahanan Nasional Malaysia (Unpublished).

Mutua, F.M. 1994. The use of the Akaike information criterion in the identification of an optimum flood frequency model. HydrologicalSciences - Journal des Sciences Hydrologiques39(3): 235-244.

von Mises, R. 1918. Uber die “Ganzzahligkeit” der Atomgewicht und verwandte Fragen. Physikalische Z. 19: 490-500.

 

 

*Corresponding author; email: yzulina@um.edu.my

 

 

 

 

previous