Sains Malaysiana 46(9)(2017): 1369–1377
http://dx.doi.org/10.17576/jsm-2017-4609-03
Fluorescence
Quenching Reaction of Chlorophyll a by Tris(acetylacetonate)Iron(III)
in Various Solvents
(Tindak
Balas Pemelindapan Kependarfluoran Klorofil a oleh Tris(asetilacetonat)Iron(III)
dalam Pelbagai Pelarut)
NARARAK LEESAKUL1*, DAWEENA MASEN2 & GUENTER GRAMPP3
1Department of Chemistry
and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla
University, Hat-Yai, Songkhla 90110, Thailand
2Public Health Program,
Faculty of Science and Technology, Southern College of Technology
Nakorn Si Thammarat
80110, Thailand
3Institute of Physical
and Theoretical Chemistry, Graz University of Technology, Graz, A-8010
Austria
Received: 31 August
2016/Accepted: 17 January 2017
ABSTRACT
Chlorophyll a is known as the
prevailing light absorbing pigment giving a strong absorption and fluorescence
emission in visible region. Quenching reactions of the chlorophyll a
fluorescence by Fe(acac)3 were precisely investigated in various organic solvents which are
benzene toluene, ethanol, methanol, dmf, dmso and acetonitrile. Electron
transfer performance of chlorophyll a by Fe(acac)3 was
investigated from oxidative quenching reaction. Herein, the simplified
Rehm-Weller relationship was used to calculate the free energy change of the
photo-induced electron transfer reaction. Emission intensity decreased when the
concentration of Fe(acac)3 quencher
was increased. Non-linear Stern-Volmer plots are found to be affected by inner
filter effect more than the ground state complex formation. Rate of quenching
reactions (kq) were determined from the Stern-Volmer equation with
corrected inner filter effect. The rates of quenching reactions occurred faster
in high viscous solvents.
Keywords: Chlorophyll a; oxidative
quenching reaction; Stern-Volmer plotting
ABSTRAK
Klorofil a
dikenali sebagai pigmen
penyerap
cahaya yang
memberikan penyerapan yang kuat dan pelepasan kependarfluoran
kawasan yang boleh dilihat. Tindak balas
pemelindapan klorofil a oleh Fe(acac)3
dikaji secara tepat dalam pelbagai pelarut organik
seperti benzena toluen, etanol, metanol, dmf, dmso dan asetonitril.
Prestasi pemindahan elektron klorofil a oleh Fe(acac)3
telah dikaji daripada tindak balas pemelindapan
oksidatif. Di sini, hubungan Rehm-Weller dipermudah
telah digunakan untuk mengira perubahan tenaga bebas tindak balas
pemindahan elektron teraruh-foto. Keamatan pelepasan menurun
apabila kepekatan pelindap Fe(acac)3
meningkat. Plot Stern-Volmer tak linear terjejas
oleh kesan turas dalaman lebih daripada pembentukan keadaan asas
yang kompleks. Kadar tindak balas pemelindapan
(kq) telah ditentukan daripada persamaan
Stern-Volmer kesan turas dalaman diperbetulkan. Kadar
tindak balas pemelindapan berlaku dengan lebih cepat dalam pelarut
likat yang tinggi.
Kata
kunci: Klorofil a; plot Stern-Volmer; tindak balas sepuhlindap oksidatif
REFERENCES
Amao, Y.,
Yamada, Y. & Aoki, K. 2004. Preparation and properties of dye-sensitized
solar cell using chlorophyll derivative immobilized TiO2 film
electrode. J. Photo. Photobiol. A: Chem. 164: 47-51.
Ar?k, M., Celebi, N. & Onganer, Y. 2005. Fluorescence quenching of fluorescein with molecular oxygen in
solution. J. Photo. Photobiol. A: Chem. 170: 105-111.
Borissevitch, I.E. 1999. More about the inner filter effect:
Corrections of Stern-Volmer fluorescence quenching constants are necessary at
very low optical absorption of the quencher. Journal of Luminescence 81:
219-224.
Durrant,
J.R., Haque, S.A. & Palomares, E. 2004. Towards optimisation of electron
transfer processes in dye-sensitized solar cells. Coord. Chem. Rev. 248:
1247-1257.
Falco, W.F.,
Queiroz, A.M., Fernandes, J., Botero, E.R., Falcão, E.A., Guimarães, F.E.G.,
Peko, J.C.M., Oliveira, S.L., Colbeck, I. & Caires, A.R.L. 2015.
Interaction between chlorophyll and silver nanoparticles: A close analysis of
chlorophyll fluorescence quenching. J. Photochem. Photobiol. A: Chemistry 299:
203-209.
Gazdaru, D.
2001. Characterization of the fluorescence quenching of
chlorophyll a by 1, 4 benzoquinone using the nonlinear. Journal of
Optoelectronics and Advanced Materials 3(1): 145-148.
Kathiravan,
A., Chandramohan, M., Renganathan, R. & Sekar, S. 2009. Spectro Chimica
Acta Part A: Molecular and Biomolecular Spectroscopy 71: 1783-1787.
Lakowicz,
J.R. 2006. Principles of Fluorescence Spectroscopy. 3rd ed. Springer: New York.
Landgraf, S.
2004. Use of ultrabright LEDs for the determination of static and time-resolved
fluorescence information of liquid and solid crude oil samples J. Biochem.
Biophysics Methods 61: 125-134.
Leesakul, N. 2007. Kinetics of fast photo - induced
electron transfer from Tris(bpy)ruthenium(II) and
Tris(bpy) osmium(II) complexes to iron (III) in water and n-alcohols.
Li, S. & Inoue, H. 1991.
Separation of manganese(II, III) chlorophylls. Anal.
Science 7: 121-124.
Liu, B.Q., Zhao, X.P. & Luo, W. 2008. The synergistic
effect of two photosynthetic pigments in dye - sensitized mesoporous TiO2 solar cells, Dye and Pigments 76:
327-331.
Medforth,
C., Muzzi, C.M., Shea, K.M., Smith, K.M., Abraham, R.J., Jia, S. &
Shelnutt, J.A. 1997. NMR studies of nonplanar porphyrins. Part 2. Effect of nonplanar conformational distortions on the porphyrins
ring current. J. Chem. Soc. Perkin Trans. 2: 839-844.
Nandre, J., Patil, S.,
Patil, V., Yu, F., Chen, L., Sahoo, S., Prior, T., Redshaw, C., Mahulikar, P.
& Patil, U. 2014. A novel fluorescent “turn-on” chemosensor for nanomolar
detection of Fe(III) from aqueous solution and its
application in living cells imaging. Biosens. Bioelectron. 61: 612-617.
Nanomura, Y., Hatano,
H., Fukuda, K. & Inoue, H.1994. Preparation and determination of cobalt(II)chlorophylls by high-performance liquid
chromatography. Anal. Science 10: 117-119.
Nanomura, Y., Igarashi,
S., Yoshioka, N. & Inoue, H. 1997. Spectroscopic
properties of chlorophylls and their derivatives. Influence of molecular
structure on the electronic state. Chemical Physics 220: 155-166.
Richert, S.A., Tsang,
P.K.S. & Sawyer, D.T. 1989. Ligand - Centered Redox Processes for MnL3,
FeL3, and CoL3 Complexes (L =
Acetylacetonate, 8-Quinolinate, Picolinate, 2,2’-Bipyridyl,
1,10-Phenanthroline) and for Their Tetrakis (2,6-dichlorophenyl) porphinato
Complexes [(Por)]. Inorg. Chem. 28: 2471-2475.
Trifunac, A.D. &
Katz, J.J. 1974. State of chlorophyll a in vitro and in
vivo from electronic transition spectra, and the nature of antenna
chlorophyll. Biochimica et Biophysica Acta
(BBA) - Bioenergetics 368(2): 181-198.
Wang,
X.F., Matsuda, A., Koyama, Y., Nagae, H., Sasaki, S.I., Tamiaki, H. & Wada,
Y. 2006. Effects of plant carotenoid spacers on the performance of a dye-sensitized
solar cell using a chlorophyll derivative: Enhancement of photocurrent
determined by one electron-oxidation potential of each carotenoid. Chem.
Phys. Lett. 423: 470-475.
Xiaoqing, L., Mingyu,
S., Chao, L., Lu, Z., Wenhui, S. & Fashui, H. 2007. Effects
of CeCl3 on energy transfer and oxygen evolution in spinach
photosystem II. J. Rare Earths 25: 624-630.
Yamashita, H. &
Inoue, H. 1991. Determination of zinc(II) chlorophylls
and their derivatives by high performance liquid chromatography with fluoro
metric detection. Anal. Science 7: 1371-1374.
Zheng, T. & Nolan,
E.M. 2012. Siderophore-based detection of Fe(III) and
microbial pathogens. Metallomics 4: 866-880.
Zvezdanovic´, J. &
Markovic´, D. 2008. Bleaching of chlorophylls by UV - irradiation in vitro:
The effects on chlorophyll organization in acetone and n - hexane. J. Serb.
Chem. Soc. 73(3): 271-282.
*Corresponding author; email: nararak.le@psu.ac.th