Sains Malaysiana 46(9)(2017): 1369–1377

http://dx.doi.org/10.17576/jsm-2017-4609-03

 

Fluorescence Quenching Reaction of Chlorophyll a by Tris(acetylacetonate)Iron(III) in Various Solvents

(Tindak Balas Pemelindapan Kependarfluoran Klorofil a oleh Tris(asetilacetonat)Iron(III) dalam Pelbagai Pelarut)

 

 

NARARAK LEESAKUL1*, DAWEENA MASEN2 & GUENTER GRAMPP3

 

1Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90110, Thailand

 

2Public Health Program, Faculty of Science and Technology, Southern College of Technology

Nakorn Si Thammarat 80110, Thailand

 

3Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, A-8010

Austria

 

Received: 31 August 2016/Accepted: 17 January 2017

 

ABSTRACT

Chlorophyll a is known as the prevailing light absorbing pigment giving a strong absorption and fluorescence emission in visible region. Quenching reactions of the chlorophyll a fluorescence by Fe(acac)3 were precisely investigated in various organic solvents which are benzene toluene, ethanol, methanol, dmf, dmso and acetonitrile. Electron transfer performance of chlorophyll a by Fe(acac)3 was investigated from oxidative quenching reaction. Herein, the simplified Rehm-Weller relationship was used to calculate the free energy change of the photo-induced electron transfer reaction. Emission intensity decreased when the concentration of Fe(acac)3 quencher was increased. Non-linear Stern-Volmer plots are found to be affected by inner filter effect more than the ground state complex formation. Rate of quenching reactions (kq) were determined from the Stern-Volmer equation with corrected inner filter effect. The rates of quenching reactions occurred faster in high viscous solvents.

 

Keywords: Chlorophyll a; oxidative quenching reaction; Stern-Volmer plotting

 

ABSTRAK

Klorofil a dikenali sebagai pigmen penyerap cahaya yang memberikan penyerapan yang kuat dan pelepasan kependarfluoran kawasan yang boleh dilihat. Tindak balas pemelindapan klorofil a oleh Fe(acac)3 dikaji secara tepat dalam pelbagai pelarut organik seperti benzena toluen, etanol, metanol, dmf, dmso dan asetonitril. Prestasi pemindahan elektron klorofil a oleh Fe(acac)3 telah dikaji daripada tindak balas pemelindapan oksidatif. Di sini, hubungan Rehm-Weller dipermudah telah digunakan untuk mengira perubahan tenaga bebas tindak balas pemindahan elektron teraruh-foto. Keamatan pelepasan menurun apabila kepekatan pelindap Fe(acac)3 meningkat. Plot Stern-Volmer tak linear terjejas oleh kesan turas dalaman lebih daripada pembentukan keadaan asas yang kompleks. Kadar tindak balas pemelindapan (kq) telah ditentukan daripada persamaan Stern-Volmer kesan turas dalaman diperbetulkan. Kadar tindak balas pemelindapan berlaku dengan lebih cepat dalam pelarut likat yang tinggi.

 

Kata kunci: Klorofil a; plot Stern-Volmer; tindak balas sepuhlindap oksidatif

REFERENCES

Amao, Y., Yamada, Y. & Aoki, K. 2004. Preparation and properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode. J. Photo. Photobiol. A: Chem. 164: 47-51.

Ar?k, M., Celebi, N. & Onganer, Y. 2005. Fluorescence quenching of fluorescein with molecular oxygen in solution. J. Photo. Photobiol. A: Chem. 170: 105-111.

Borissevitch, I.E. 1999. More about the inner filter effect: Corrections of Stern-Volmer fluorescence quenching constants are necessary at very low optical absorption of the quencher. Journal of Luminescence 81: 219-224.

Durrant, J.R., Haque, S.A. & Palomares, E. 2004. Towards optimisation of electron transfer processes in dye-sensitized solar cells. Coord. Chem. Rev. 248: 1247-1257.

Falco, W.F., Queiroz, A.M., Fernandes, J., Botero, E.R., Falcão, E.A., Guimarães, F.E.G., Peko, J.C.M., Oliveira, S.L., Colbeck, I. & Caires, A.R.L. 2015. Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching. J. Photochem. Photobiol. A: Chemistry 299: 203-209.

Gazdaru, D. 2001. Characterization of the fluorescence quenching of chlorophyll a by 1, 4 benzoquinone using the nonlinear. Journal of Optoelectronics and Advanced Materials 3(1): 145-148.

Kathiravan, A., Chandramohan, M., Renganathan, R. & Sekar, S. 2009. Spectro Chimica Acta Part A: Molecular and Biomolecular Spectroscopy 71: 1783-1787.

Lakowicz, J.R. 2006. Principles of Fluorescence Spectroscopy. 3rd ed. Springer: New York.

Landgraf, S. 2004. Use of ultrabright LEDs for the determination of static and time-resolved fluorescence information of liquid and solid crude oil samples J. Biochem. Biophysics Methods 61: 125-134.

Leesakul, N. 2007. Kinetics of fast photo - induced electron transfer from Tris(bpy)ruthenium(II) and Tris(bpy) osmium(II) complexes to iron (III) in water and n-alcohols.

Li, S. & Inoue, H. 1991. Separation of manganese(II, III) chlorophylls. Anal. Science 7: 121-124.

Liu, B.Q., Zhao, X.P. & Luo, W. 2008. The synergistic effect of two photosynthetic pigments in dye - sensitized mesoporous TiO2 solar cells, Dye and Pigments 76: 327-331.

Medforth, C., Muzzi, C.M., Shea, K.M., Smith, K.M., Abraham, R.J., Jia, S. & Shelnutt, J.A. 1997. NMR studies of nonplanar porphyrins. Part 2. Effect of nonplanar conformational distortions on the porphyrins ring current. J. Chem. Soc. Perkin Trans. 2: 839-844.

Nandre, J., Patil, S., Patil, V., Yu, F., Chen, L., Sahoo, S., Prior, T., Redshaw, C., Mahulikar, P. & Patil, U. 2014. A novel fluorescent “turn-on” chemosensor for nanomolar detection of Fe(III) from aqueous solution and its application in living cells imaging. Biosens. Bioelectron. 61: 612-617.

Nanomura, Y., Hatano, H., Fukuda, K. & Inoue, H.1994. Preparation and determination of cobalt(II)chlorophylls by high-performance liquid chromatography. Anal. Science 10: 117-119.

Nanomura, Y., Igarashi, S., Yoshioka, N. & Inoue, H. 1997. Spectroscopic properties of chlorophylls and their derivatives. Influence of molecular structure on the electronic state. Chemical Physics 220: 155-166.

Richert, S.A., Tsang, P.K.S. & Sawyer, D.T. 1989. Ligand - Centered Redox Processes for MnL3, FeL3, and CoL3 Complexes (L = Acetylacetonate, 8-Quinolinate, Picolinate, 2,2’-Bipyridyl, 1,10-Phenanthroline) and for Their Tetrakis (2,6-dichlorophenyl) porphinato Complexes [(Por)]. Inorg. Chem. 28: 2471-2475.

Trifunac, A.D. & Katz, J.J. 1974. State of chlorophyll a in vitro and in vivo from electronic transition spectra, and the nature of antenna chlorophyll. Biochimica et Biophysica Acta (BBA) - Bioenergetics 368(2): 181-198.

Wang, X.F., Matsuda, A., Koyama, Y., Nagae, H., Sasaki, S.I., Tamiaki, H. & Wada, Y. 2006. Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: Enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid. Chem. Phys. Lett. 423: 470-475.

Xiaoqing, L., Mingyu, S., Chao, L., Lu, Z., Wenhui, S. & Fashui, H. 2007. Effects of CeCl3 on energy transfer and oxygen evolution in spinach photosystem II. J. Rare Earths 25: 624-630.

Yamashita, H. & Inoue, H. 1991. Determination of zinc(II) chlorophylls and their derivatives by high performance liquid chromatography with fluoro metric detection. Anal. Science 7: 1371-1374.

Zheng, T. & Nolan, E.M. 2012. Siderophore-based detection of Fe(III) and microbial pathogens. Metallomics 4: 866-880.

Zvezdanovic´, J. & Markovic´, D. 2008. Bleaching of chlorophylls by UV - irradiation in vitro: The effects on chlorophyll organization in acetone and n - hexane. J. Serb. Chem. Soc. 73(3): 271-282.

 

*Corresponding author; email: nararak.le@psu.ac.th

 

 

 

previous