Sains Malaysiana 46(9)(2017):
1385–1392
http://dx.doi.org/10.17576/jsm-2017-4609-05
Formation and
Sustainability of H-mode Regime in Tokamak Plasma via Source Perturbations
Based on Two-Field Bifurcation Concept
(Pembentukan dan Kelestarian Rejim H-mod pada Plasma
Tokamak melalui Pengusikan
Sumber Berdasarkan Konsep Dua-Bidang Dwicabang)
B. CHATTHONG1* & T. ONJUN2
1Department of Physics,
Faculty of Science, Prince of Songkla University, Hat Yai,
Songkla,
90110, Thailand
2School of Manufacturing Systems
and Mechanical Engineering, Sirindhorn International Institute of Technology, Thammasat
University, Pathum Thani, Thailand
Received:
31 August 2016/Accepted: 10 November 2016
ABSTRACT
A set of
coupled particle and thermal transport equations is used to study a formation
and sustainability of an edge transport barrier (ETB)
in tokamak plasmas based on two-field bifurcation. The two transport equations
are numerically solved for spatio-temporal profiles of plasma pressure and
density. The plasma core transport includes both neoclassical and turbulent
effects, where the latter can be suppressed by flow shear mechanism. The flow
shear, approximated from the force balance equation, is proportional to the
product of pressure and density gradients, resulting in non-linearity behaviors
in this calculation. The main thermal and particle sources are assumed to be
localized near plasma center and edge, respectively. It is found that the
fluxes versus gradients regime illustrates bifurcation nature of the plasma.
This picture of the plasma implies hysteresis properties in fluxes versus
gradients space. Hence, near marginal point, the perturbation in thermal or
particle sources can trigger an L-H transition. Due to hysteresis, the
triggered H-mode can be sustained and the central plasma pressure and density
can be enhanced.
Keywords: ETB;
fusion; L-H transition; plasma; tokamak
ABSTRAK
Satu set
gandingan zarah dan persamaan angkutan terma digunakan untuk mengkaji
pembentukan dan kelestarian halangan angkutan pinggiran (ETB)
dalam plasma tokamak berdasarkan dua medan dwicabang. Dua persamaan angkutan
diselesaikan secara berangka untuk profil ruang-masa tekanan plasma dan
ketumpatan. Teras plasma mengangkut kedua-dua kesan neoklasik dan turbulens,
dengan turbulens boleh disekat melalui mekanisme aliran ricih. Aliran ricih,
penghampiran daripada persamaan keseimbangan daya, adalah berkadaran dengan
produk tekanan dan kecerunan ketumpatan yang mengakibatkan tingkah-laku yang
tak linear dalam pengiraan ini. Sumber utama terma dan zarah masing-masing
adalah diandaikan setempat berhampiran pusat plasma dan pinggiran. Didapati
bahawa rejim kecerunan menggambarkan dwicabang semula jadi plasma. Gambaran
plasma ini membayangkan sifat histeresis dalam fluks berbanding ruang
kecerunan. Oleh yang demikian, berhampiran titik marginal, pengusikan di dalam
sumber terma atau zarah boleh mencetuskan peralihan L-H. Oleh sebab histeresis,
pencetus H-mod dapat dikekalkan dan ketumpatan tekanan tengah plasma boleh
dipertingkatkan.
Kata kunci: ETB; lakuran; plasma; peralihan L-H;
tokamak
REFERENCES
Aymar,
R., Barabaschi, P. & Shimomura, Y. 2002. The ITER design. Plasma Physics and Controlled Fusion 44:
519.
Carreras,
B.A., Diamond, P.H., Liangs, Y.M., Lebedev, V. & Newman, D. 1994. Dynamics
of L to H bifurcation. Plasma Physics and
Controlled Fusion 36: A93.
Chatthong,
B. & Onjun, T. 2016. Understanding roles of E×B flow and magnetic
shear on the formation of internal and edge transport barriers using two-field
bifurcation concept. Nuclear Fusion 56: 016010.
Chatthong,
B. & Onjun, T. 2015. Locality effects on bifurcation paradigm of L-H transition
in tokamak plasmas. Songklanakarin
Journal of Science and Technology 37: 719-725.
Diamond,
P.H., Lebedev, V.B., Newman, D.E. & Carreras, B.A. 1995. Dynamics of
spatiotemporally propagating transport barriers. Physics of Plasmas (1994-present) 2: 3685-3695.
Dimits,
A.M., Bateman, G., Beer, M.A., Cohen, B.I., Dorland, W., Hammett, G.W., Kim,
C., Kinsey, J.E., Kotschenreuther, M., Kritz, A.H., Lao, L.L., Mandrekas, J.,
Nevins, W.M., Parker, S.E., Redd, A.J., Shumaker, D.E., Sydora, R. &
Weiland, J. 2000. Comparisons and physics basis of tokamak transport models and
turbulence simulations. Physics of
Plasmas 7: 969-983.
Garbet,
X., Mantica, P., Ryter, F., Cordey, G., Imbeaux, F., Sozzi, C., Manini, A.,
Asp, E., Parail, V., Wolf, R. & the JET EFDA Contributors. 2004. Profile
stiffness and global confinement. Plasma
Physics and Controlled Fusion 46: 1351.
Hinton,
F.L. 1991. Thermal confinement bifurcation and the L- to H-mode transition in
tokamaks. Physics of Fluids B: Plasma
Physics 3: 696-704.
Hinton,
F.L. & Staebler, G.M. 1993. Particle and energy confinement bifurcation in
tokamaks. Physics of Fluids B: Plasma
Physics 5: 1281-1288.
Hubbard,
A.E. 2000. Physics and scaling of the H-mode pedestal. Plasma Physics and Controlled Fusion 42(Supplement 5A).
Iguchi,
H., Ida, K., Yamada, H., Itoh, K., Itoh, S.I., Matsuoka, K., Okamura, S.,
Sanuki, H., Yamada, I., Takenaga, H., Uchino, K. & Muraoka, K. 1994. The
effect of magnetic field configuration on particle pinch velocity in compact
helical system (CHS). Plasma Physics and
Controlled Fusions 36(7): 1091.
Itoh,
K. 1994. Theoretical progress on H-mode physics. Plasma Physics and Controlled Fusion 36: A307.
Itoh,
K., Itoh, S.I. & Fukuyama, A. 1999. Transport
and Structural Formation in Plasmas. Bristol: IOP Publishing.
Itoh,
S.I. & Itoh, K. 1988. Model of L to H-mode transition in tokamak. Physical Review Letters 60: 2276.
Jhang,
H., Kim, S.S. & Diamond, P.H. 2012. Role of external torque in the
formation of ion thermal internal transport barriers. Physics of Plasmas 19: 042302.
Lebedev,
V. B. & Diamond, P.H. 1997. Theory of the spatiotemporal dynamics of
transport bifurcations. Physics of Plasmas 4: 1087-1096.
Malkov,
M.A. & Diamond, P.H. 2009. Weak hysteresis in a simplified model of the L-H
transition. Physics of Plasmas (1994-present) 16: 012504.
Malkov,
M.A. & Diamond, P.H. 2008. Analytic theory of L --> H transition,
barrier structure, and hysteresis for a simple model of coupled particle and
heat fluxes. Physics of Plasmas 15:
122301.
Pankin, A.Y., Bateman,
G., Brennan, D.P., Schnack, D.D., Snyder, P.B., Voitsekhovitch, I., Kritz,
A.H., Kruger, S., Janeschitz, G., Onjun, T., Pacher, G.W. & Pacher, H.D.
2005. ELM riggering
conditions for the integrated modeling of H-mode plasmas. Czechoslovak Journal of Physics 55: 367-380.
Ryter,
F., Suttrop, W., Brüsehaber, B., Kaufmann, M., Mertens, V., Murmann, H.,
Peeters, A.G., Stober, J., Schweinzer, J., Zohmdag H. & ASDEX Upgrade Team.
1998. H-mode power threshold and transition in ASDEX Upgrade. Plasma Physics and Controlled Fusion 40:
725.
Shaing,
K.C. & Crume, E.C. 1989. Bifurcation theory of poloidal rotation in
tokamaks: A model for L-H transition. Physical
Review Letters 63: 2369.
Snipes,
J.A. & the International H-mode Threshold Database Working Group. 2000.
Latest results on the H-mode threshold using the international H-mode threshold
database. Plasma Physics and Controlled
Fusion 42: A299.
Thomas,
D. M., Groebner, R. J., Burrell, K. H., Osborne, T.H. & Carlstrom, T.N.
1998. The back transition and hysteresis effects in DIII-D. Plasma Physics and Controlled Fusion 40:
707.
Toda,
S., Itoh, S.I., Yagi, M., Fukuyama, A. & Itoh, K. 1996. Double hysteresis
in L/H transition and compound dithers. Plasma
Physics and Controlled Fusion 38: 1337.
Wagner,
F. 2007. A quarter-century of H-mode studies. Plasma Physics and Controlled Fusion 49: B1.
Wesson,
J. 2004. Tokamaks. New York: Clarendon
Press.
*Corresponding author;
email: boonyarit.ch@psu.ac.th