Sains Malaysiana 46(9)(2017): 1407–1411
http://dx.doi.org/10.17576/jsm-2017-4609-08
Monte
Carlo Simulation of 6 MV Flattening Filter Free Photon
Beam of TrueBeam STx LINAC at Songklanagarind Hospital
(Simulasi
Monte Carlo 6 MV Perataan Tanpa Penurasan Alur Foton
TrueBeam STx LINAC di Hospital Songklanagarind)
M. ARIF
EFENDI1
2, AMPORN
FUNSIAN2,
THAWAT
CHITTRAKARN1
& TRIPOB BHONGSUWAN1*
1Department of Physics, Faculty
of Science, Prince of Songkla University, 90110 Hatyai City, Songkla, Thailand
2Department of Radiology,
Faculty of Medicine, Prince of Songkla University
90110 Hatyai City,
Songkla, Thailand
Received:
31 August 2016/ Accepted: 17 January 2017
ABSTRACT
In this study, 6 MV photon
beam of TrueBeam STx Varian LINAC with Flattening Filter Free
(FFF) was simulated using PRIMO code.
The depth dose profiles for various jaws open fields and cross
beam profiles for various depths inside water phantom were determined
using Monte Carlo (MC)
simulation technique and validated with experimental result. The
experiments were performed using the Source to Surface Distance
(SSD)
technique with a 100 cm distance from target to the surface of
water. Simulation used 109
histories with the same configurations
with experiments. The depth dose profiles and cross beam profiles
of 6 MV FFF photon beam was determined using MC simulations
and compared with experimental results. The results showed that
depth dose profiles and cross beam profiles by MC simulation accurately matched
with experimental results. The best result of depth dose profile
was obtained at 10×10 cm2 jaws open field with 98.53% passing
criterion whereas cross beam profile was obtained at 10 cm depth
inside water phantom with 88.96% passing criterion. The discrepancies
were caused by scatter of particle and incompatibility of primary
beam in PRIMO with
experiment.
Keywords: Flattening Filter Free (FFF);
Linear Accelerator (LINAC); Monte Carlo simulation; PRIMO Code
ABSTRAK
Dalam kajian ini, 6 MV alur
foton daripada TrueBeam STx Varian LINAC dengan perataan tanpa penurasan
(FFF) disimulasikan menggunakan kod PRIMO.
Profil kedalaman dos untuk pelbagai ukuran rahang dan profil melintang
alur untuk pelbagai kedalaman dalam fantom air telah ditentukan
dengan menggunakan teknik simulasi Monte Carlo (MC) dan disahkan secara eksperimen.
Uji kaji telah dijalankan dengan menggunakan teknik jarak sumber
kepada permukaan (SSD) dengan jarak 100 cm dari sasaran
ke permukaan air. Simulasi menggunakan 109
peristiwa, konfigurasi yang sama dengan uji
kaji. Profil kedalaman dos dan profil melintang alur daripada
6 MV
FFF alur foton ditentukan dengan menggunakan simulasi
MC
dan dibandingkan dengan keputusan uji kaji. Hasil
kajian menunjukkan bahawa hasil simulasi MC daripada profil kedalaman dos dan profil melintang alur
adalah sepadan tepat dengan keputusan uji kaji. Keputusan terbaik
profil kedalaman dos adalah pada 10×10 cm2 dengan kriteria lulus 98.53%.
Keputusan terbaik profil melintang alur adalah pada kedalaman
10 cm dalam fantom air dengan kriteria lulus 88.96%. Percanggahan
adalah disebabkan oleh serakan zarah dan ketidaksesuaian alur
utama dalam PRIMO berbanding
dengan uji kaji.
Kata
kunci: Kod PRIMO; pemecut linear (LINAC);
perataan tanpa penurasan (FFF); simulasi Monte
Carlo
REFERENCES
Abdul Haneefa, K., Siji
Cyriac, T., Musthafa, M.M., Ganapathi Raman, R., Hridya, V.T., Siddhartha, A.
& Shakir, K.K. 2014. FLUKA Monte Carlo for basic dosimetric studies of dual
energy medical linear accelerator. Journal of Radiotherapy 46(37):
46098370.
American Cancer Society.
2015. Cancer Facts & Figures. Atlanta, Ga: American Cancer Society.
Atarod, M., Shokrani, P.
& Azarnoosh, A. 2013. Out-of-field beam characteristics of a 6 MV photon
beam: Results of a Monte Carlo study. Applied Radiation and Isotopes 72:
182-194.
Belosi, M.F., Rodriguez,
M., Fogliata, A., Cozzi, L., Sempau, J., Clivio, A., Nicolini, G., Vanetti, E.,
Krauss, H., Khamphan, C., Fenoglietto, P., Puxeu, J., Fedele, D., Mancosu, P.
& Brualla, L. 2014. Monte Carlo simulation of truebeam
flattening-filter-free beams using varian phase-space files: Comparison with
experimental data. Medical Physics 41(5): 51707.
Beyer, G.P. 2013.
Commissioning measurements for photon beam data on three truebeam linear
accelerators, and comparison with trilogy and clinac 2100 linear accelerators. Journal
of Applied Clinical Medical Physics 14(1): 273-288.
Chetty, I.J., Curran,
B., Cygler, J.E., DeMarco, J.J., Ezzell, G., Faddegon, B.A., Kawrakow, I.,
Keall, P.J., Liu, H., Charlie Ma, C.M., Rogers, D.W.O., Seuntjens, J.,
Sheikh-Bagheri, D. & Siebers, J.V. 2007. Report of the AAPM Task Group No.
105: Issues associated with clinical implementation of Monte Carlo-based photon
and electron external beam treatment planning. Medical Physics 34(12):
4818-4853.
Graves, Y.J., Jia, X.
& Jiang, S.B. 2013. Effect of statistical fluctuation in Monte Carlo based
photon beam dose calculation on gamma index evaluation. Physics in Medicine
and Biology 58(6): 1839-1854.
Huang, Y., Alfredo
Siochi, R. & Bayouth, J.E. 2012. Dosimetric properties of a beam
quality-matched 6 MV unflattened photon beam. Journal of Applied Clinical
Medical Physics 13(4): 71-81.
Konefał, A.,
Bakoniak, M., Orlef, A., Maniakowski, Z. & Szewczuk, M. 2015. Energy
spectra in water for the 6 MV x-ray therapeutic beam generated by clinac-2300
linac. Radiation Measurements 72: 12-22.
Low, D.A., Harms, W.B.,
Mutic, S. & Purdy, J.A. 1998. A technique for the quantitative evaluation
of dose distributions. Medical Physics 25(5): 656-661.
Mayles, P., Nahum, A.
& Rosenwald, J-C. 2007. Handbook of Radiotherapy Physics: Theory and
Practice. Boca Raton: CRC Press.
Reis Junior, J.P.,
Salmon, H., Menezes, A.F., Pavan, G.A., Rosa, L.A.R. & Silva, A.X. 2014.
Simulation of Siemens ONCORTM expression
linear accelerator using phase space in the MCNPX code. Progress in Nuclear
Energy 70: 64-70.
Rodriguez, M., Sempau,
J. & Brualla, L. 2013. PRIMO: A graphical environment for the Monte Carlo
simulation of varian and elekta linacs. Strahlentherapie Und Onkologie 189(10):
881-886.
Rodriguez, M., Sempau,
J., Fogliata, A., Cozzi, L., Sauerwein, W. & Brualla, L. 2015. A
geometrical model for the Monte Carlo simulation of the truebeam linac. Physics
in Medicine and Biology 60(11): N219-N229.
Saidi, P., Tenreiro, C.
& Sadeghi, M. 2013. Variance Reduction of Monte Carlo Simulation in
Nuclear Engineering Field. Rijeka, Croatia: INTECH Open Access Publisher.
Sardari, D., Maleki, R.,
Samavat, H. & Esmaeeli, A. 2010. Measurement of depth-dose of linear
accelerator and simulation by use of Geant4 computer code. Reports of
Practical Oncology & Radiotherapy 15(3): 64-68.
Tartar, A. 2014. Monte
Carlo simulation approaches to dose distributions for 6 MV photon beams in
clinical linear accelerator. Biocybernetics and Biomedical Engineering 34(2):
90-100.
Xiao, Y., Kry, S.F.,
Popple, R., Yorke, E., Papanikolaou, N., Stathakis, S., Xia, P., Huq, S.,
Bayouth, J., Galvin, J. & Yin, F.F. 2015. Flattening filter-free
accelerators: A report from the AAPM therapy emerging technology assessment
work group. Journal of Applied Clinical Medical Physics 16(3): 5219.
*Corresponding author; email: tripop.b@psu.ac.th