Sains Malaysiana 46(9)(2017): 1421–1428
http://dx.doi.org/10.17576/jsm-2017-4609-10
Effects
of Elevated Atmospheric CO2
on Photosynthesis, Growth and Biomass in Shorea platycarpa
F. Heim (Meranti Paya)
(Kesan
Peningkatan CO2
dalam Atmosfera terhadap Fotosintesis, Pertumbuhan dan Biojisim
Shorea platycarpa F. Heim (Meranti Paya))
NOR LAILATUL WAHIDAH, M.1,4*, WAN JULIANA, W.A.,1 NIZAM, M.S.1,3 & CHE RADZIAH, C.M.Z.2
1School of Environmental & Natural Resource Sciences, Faculty
of Science & Technology
Universiti Kebangsaan Malaysia, 43600 UKM
Bangi, Selangor Darul Ehsan, Malaysia
2School of Biosciences & Biotechnology, Faculty of
Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Institute of Climate Change, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4School of Biology, Faculty of Applied Sciences, Universiti
Teknologi MARA
Cawangan Pahang, Kampus Jengka, 26400
Bandar Tun Abdul Razak, Pahang Darul Makmur
Malaysia
Received: 31 August 2016/Accepted: 1
April 2017
ABSTRACT
Elevated atmospheric
CO2 is widely reported to
stimulate the plant growth and affect plant physiological processes.
However, studies on the respond of tropical plant species to elevated
CO2 are quite limited and
remain largely unknown. The objective of this study was to investigate
the effects of elevated atmospheric CO2 treatments on the photosynthetic
characteristics, growth and biomass in Shorea platycarpa.
Saplings of S. platycarpa were
grown for seven months in the open roof gas chamber supplied with
elevated CO2 (800±50 μmol
mol-1)
and in the shade house with ambient CO2 (400±50 μmol
mol-1).
Measurements of S. platycarpa growth
and photosynthetic characteristics were made at frequent intervals.
Biomass characteristics were determined using destructive methods
after seven months of treatment and nondestructive method was
used for leaf area index (LAI)
determination. Photosynthetic rate (A) of S. platycarpa
was not significantly affected by elevated CO2. Increased water
use efficiency (WUE) of S. platycarpa grown in elevated CO2 was due to the
reduced stomatal conductance (gs)
and transpiration rate (E). The CO2 elevation had no
significant effect on the S. platycarpa
relative growth rates (RGR) and biomass but significantly reduced the leaf area.
A weak correlation was found between photosynthetic rate (A) and
relative growth rate (RGR). The results clearly showed that photosynthesis,
growth rate and biomass of S. platycarpa
were not significantly enhanced by elevated CO2. The findings indicated
that elevated CO2 did not affect
a relatively slow growing and a late successional peat swamp tree
species.
Keywords: Biomass; elevated CO2;
growth rate; photosynthesis; Shorea platycarpa
ABSTRAK
Peningkatan CO2
dalam atmosfera
telah dilaporkan secara meluas kerana dapat
meningkatkan pertumbuhan
pokok dan memberi
kesan kepada
proses fisiologi pokok. Namun begitu, kajian ke atas tindak
balas spesies
pokok tropika terhadap
peningkatan CO2
agak terhad dan sebahagian besarnya tidak diketahui. Objektif kajian ini ialah
untuk mengkaji
kesan rawatan peningkatan
CO2
dalam atmosfera ke atas
ciri fotosintesis,
pertumbuhan dan biojisim Shorea platycarpa. Anak
pokok S. platycarpa
telah ditanam selama tujuh bulan
di dalam bilik
gas dengan bumbung terbuka dan dibekalkan
dengan peningkatan
CO2 (800±50 μmol
mol-1)
dan di dalam
rumah teduh dengan
ambien CO2 (400±50 μmol mol-1). Pengukuran
secara selang
berulang ke atas
pertumbuhan S. platycarpa
dan ciri
fotosintesis telah dibuat. Selepas tujuh bulan rawatan,
ciri biojisim
telah ditentukan dengan menggunakan kaedah musnah dan
tanpa musnah
untuk indeks luas
daun (LAI). Kadar fotosintesis
(A) S. platycarpa tidak
dipengaruhi secara
signifikan oleh peningkatan CO2. Peningkatan
kecekapan penggunaan
air (WUE)
S. platycarpa yang hidup
di CO2 berganda
disebabkan oleh pengurangan stomata konduktans (gs) dan kadar transpirasi (E). Peningkatan CO2 tidak
memberi kesan
signifikan ke atas
kadar pertumbuhan
relatif (RGR) dan
biojisim tetapi
mengurangkan luas daun secara signifikan.
Korelasi lemah
wujud antara kadar
fotosintesis (A) dengan
kadar pertumbuhan relatif (RGR). Hasil
jelas menunjukkan
bahawa fotosintesis, kadar pertumbuhan dan biojisim S. platycarpa tidak meningkat secara signifikan dengan peningkatan CO2. Penemuan tersebut memberi indikasi bahawa peningkatan CO2 tidak
memberi kesan kepada spesies
pokok paya
gambut dengan ciri
pertumbuhan perlahan
secara relatif dan lewat sesaran.
Kata kunci: Biojisim;
fotosintesis; kadar pertumbuhan; peningkatan CO2; Shorea
platycarpa
REFERENCES
Anten,
N.P.R., Hirose, T., Onoda, Y., Kinugasa, T., Kim, H.Y., Okada, M. &
Kobayashi, K. 2003. Elevated CO2 and
nitrogen availability have interactive effects on canopy carbon gain in rice. New
Phytologist 161: 459-471.
Ashton,
P.S., Givnish, T.J. & Appanah, S. 1988. Staggered flowering in the
Dipterocarpaceae: New insights into floral induction and the evolution of mast
fruiting in the aseasonal tropics. The American Naturalist 132(1):
44-66.
Cheng, S.,
Moore, B. & Seemann, J.R. 1998. Effects of short- and long-term elevated CO2 on
the expression of ribulose-1,5- bisphosphate carboxylase/oxygenase genes and carbohydrate
accumulation in leaves of Arabidopsis thaliana (L.) Heynh. Plant
Physiology 116: 715-723.
De Deyn,
G.B., Cornelissen, J.H.C. & Bardgett, R.D. 2008. Plant functional traits
and soil carbon sequestration in contrasting biomes. Ecology Letters 11(5):
516-531.
Dijkstra,
P., Hymus, G., Colavito, D., Vieglais, D.A., Cundari, C.M. & Johnson, D.P.
2002. Elevated atmospheric CO2 stimulates
aboveground biomass in a fire-regenerated scrub-oak ecosystem. Global Change
Biology 8: 90-103.
Faria, T.,
Wilkins, D., Besford, R.T., Pereira, M.V.J.S. & Chaves, M.M. 1996. Growth
at elevated C02 leads
to down-regulation of photosynthesis and altered response to high temperature
in Quercus suber L . seedlings. Journal of Experimental Botany 47(304):
1755-1761.
Gan, K.S.,
Lim, S.C. & Choo, K.T. 1998. Timber Notes - Light Hardwoods (I). (Meranti
bakau, Dark red meranti, Light red meranti, White meranti, Yellow meranti). Timber
Technology Bulletin No. 9.
Hamzah,
K.A., Parlan, I., Kassim, A.R., Hassan, C.H., Akeng, G. & Said, N.M. 2009.
Ecological characteristics of a Gonystylus bancanus-rich area in Pekan
Forest Reserve, Pahang, Malaysia. Tropical Life Sciences Research 20(2):
15-27.
IPCC. 2014: Climate
Change 2014: Synthesis Report. Contribution of Working Groups I, II and
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by Core Writing Team, Pachauri, R.K. & Meyer, L.A. IPCC,
Geneva, Switzerland. p. 151.
Jach, M.E.
& Ceulemans, R. 1999. Effects of elevated atmospheric CO2 on
phenology, growth and crown structure of Scots pine (Pinus sylvestris)
seedlings after two years of exposure in the field. Tree Physiology 19:
289-300.
Karnosky,
D.F. 2003. Impacts of elevated atmospheric CO2 on
forest trees and forest ecosystems: Knowledge gaps. Environment
International 29: 161-169.
Kenzo, T.,
Yoneda, R., Matsumoto, Y., Azani, A.M. & Majid, M.N. 2011. Growth and
photosynthetic response of four Malaysian indigenous tree species under
different light conditions. Journal of Tropical Forest Science 23(3):
271- 281.
Kim, H.Y.,
Lieffering, M., Miura, S., Kobayashi, K. & Okada, M. 2001. Growth and
nitrogen uptake of CO2-enriched rice under field
conditions. New Phytologist 150: 223-229.
Kirschbaum,
M.U.F. 2011. Does enhanced photosynthesis enhance growth? Lessons learned from
CO2 enrichment studies. Plant Physiology 155(1):
117-124.
Leakey, A.D.B., Bishop, K.
& Ainsworth, E. 2012. A multi-biome gap in understanding of crop and
ecosystem responses to elevated CO2. Current Opinion in
Plant Biology 15(3): 228-236.
Liang, N., Tang, Y. & Okuda, T. 2001.
Is elevation of carbon dioxide concentration beneficial to seedling
photosynthesis in the understory of tropical rain forests ? Tree Physiology 21:
1047-1055.
Long, S.P., Ainsworth, E.A., Rogers, A.
& Ort, D.R. 2004. Rising atmospheric carbon dioxide: Plants FACE the
future. Annu. Rev. Plant Biol. 55: 591-628.
Lovelock, C.E., Virgo, A., Popp, M.,
Winter, K. & Environmental, S. 1999. Effects of elevated CO2 concentrations on photosynthesis, growth and reproduction of branches of the
tropical canopy tree species, Luehea seemannii Tr. & Planch. Plant,
Cell and Environment 22: 49-59.
Mooney, H.A. & Winner, W.E. 1991.
Partitioning response of plants to stress. In Response of Plants to Multiple
Stresses, edited by Mooney, H.A., Winner, W.E. & Pell, E.J. New York:
Academic Press.
Novriyanti, E., Watanabe, M., Kitao, M.,
Utsugi, H. & Uemura, A. 2012. High nitrogen and elevated [CO2]
effects on the growth, defense and photosynthetic performance of two eucalypt
species. Environmental Pollution 170: 124-130.
Oberbauer, S.V., Strain, B.R. &
Fetcher, N. 1985. Effects of CO2 enrichment on seedling physiology
and growth of two tropical trees. Physiologia Plantarum 65: 352-356.
Oikawa, S., Okada, M. & Hikosaka, K.
2013. Effects of elevated CO2 on leaf area dynamics in nodulating
and non- nodulating soybean stands. Plant Soil 373: 627-639.
Poorter, H. & Pérez-Soba, M. 2001.
The growth response of plants to elevated CO2 under non-optimal
environmental conditions. Oecologia 129(1): 1-20.
Prior, S., Runion, G., Marble, S.,
Rogers, H., Gilliam, C. & Allen Torbert, H. 2011. A review of elevated
atmospheric CO2 effects on plant growth and water relations:
Implications for horticulture. Horticultural Science 46(2): 158-162.
Rasineni, G.K., Guha, A. & Reddy,
A.R. 2011. Responses of Gmelina arborea, a tropical deciduous tree
species, to elevated atmospheric CO2: Growth, biomass productivity
and carbon sequestration efficacy. Plant Science 181(4): 428-438.
Watanabe, M., Watanabe, Y., Kitaoka, S.,
Utsugi, H., Kita, K. & Koike, T. 2011. Growth and photosynthetic traits of
hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi)
under elevated CO2 concentration with low nutrient availability. Tree
Physiology 31: 965-975.
Yazaki, K., Funada, R.Y.O., Mori, S.,
Maruyama, Y., Abaimov, A.P., Kayama, M. & Koike, T. 2001. Growth and annual
ring structure of Larix sibirica grown at different carbon dioxide
concentrations and nutrient supply rates. Tree Physiology 3: 1223-1229.
Yazaki, K., Maruyama, Y., Mori, S.,
Koike, T. & Funada, R. 2005. Effects of elevated carbon dioxide
concentration on wood structure and formation in trees. In Plant Responses
to Air Pollution and Global Changes, edited by Omasa, K., Nouchi, I. &
De Kok, L.J. Tokyo: Springer-Verlag. pp. 89-97.
Zagt, R.J. & Werger, M.J.A. 1998.
Community structure and the demography of primary species in tropical rain
forest. In Dynamics of Tropical Communities, edited by Newbery, D.M.,
Prins, H.H.T. & Brown, N.D. Oxford: Blackwell Science. pp. 193-219.
*Corresponding author; email:
lailatul34@gmail.com