Sains Malaysiana 46(9)(2017): 1441–1447
http://dx.doi.org/10.17576/jsm-2017-4609-12
Carbon
Content in Different Seagrass Species in Andaman Coast of Thailand
(Kandungan
Karbon dalam Pelbagai Spesies Rumpai Laut di Teluk Andaman, Thailand)
MILICA STANKOVIC1*, JANMANEE PANYAWAI1, KAMARUDIN JANSANIT2, TIPAMAT UPANOI3 & ANCHANA PRATHEP1
1Seaweed and Seagrass
Research Unit Department of Biology, Faculty of Science, Prince of Songkla
University
90110 Hat Yai, Thailand
2Marine and Coastal
Resources Research and Development Center, The Andaman Coast, Thailand
3Marine and Coastal
Resources Research and Development Center, The Middle Gulf of Thailand, Thailand
Received: 31 August
2016/Accepted: 17 January 2017
ABSTRACT
Seagrass meadows have one of the
highest carbon sequestration and storage capacities than any other ecosystems.
Carbon that is stored in the ecosystem is accumulated in the deposited sediment
as well as in the living, above and below ground biomass, with a different rate
of carbon sequestration and storage between the species. The objective of this
research was to investigate carbon storage in the living plants and in the
sediment among species of different size in tropical waters. The samples were
collected from Phuket province, Thailand, in the high density monospecific
patches of different size species (Enhalus acoroides as a big, Thalassia
hemprhicii as a medium and Halophila ovalis as a small size species).
Total carbon and carbon stored in above and below ground, was significantly different
between the species (p<0.05), with the highest values in below ground
parts of E. acoroides and T. hemprichii 238.10±85.07 and
134±21.55 g Dw m-2, respectively. Average organic
carbon in the sediment was significantly different (p<0.05) as well,
with E. acoroides having highest organic carbon content in the deeper
layers of the sediment 1.14±0.25 % Corg, while the other two
species had higher organic carbon in the top and medium layers of sediment. The
results of this preliminary research propose that big size species have higher
carbon content than smaller species, which reflects in higher sequestration
rates of carbon from the ocean, thus reducing the ocean carbon budget.
Moreover, it provides necessary information on size of the species which is the
key for the future carbon storage studies in the region.
Keywords: Above ground; below
ground; organic carbon; seagrass; sediment
ABSTRAK
Padang rumpai laut mempunyai keupayaan
menyerap karbon dan kapasiti simpanan antara yang tertinggi berbanding
ekosistem yang lain. Karbon yang disimpan di dalam ekosistem yang
terkumpul di dalam sedimen didepositkan di dalam kehidupan, atas
dan bawah tanah biojisim, dengan kadar penyerapan dan simpanan
karbon yang berbeza antara spesies. Kajian ini bertujuan untuk
mengkaji penyimpanan karbon dalam tumbuh-tumbuhan dan sedimen
antara spesies berbeza saiz di perairan tropika. Sampel kajian
telah dikumpul dari daerah Phuket, Thailand, dalam tompok monospesifik
berkepadatan tinggi spesies dengan saiz yang berbeza (Enhalus
acoroides Thalassia hemprhicii yang besar, sebagai medium serta
Halophila ovalis sebagai satu spesies saiz kecil). Jumlah
karbon dan karbon yang disimpan di atas dan bawah tanah, adalah
berbeza antara spesies (p<0.05), dengan nilai tertinggi di
bawah bahagian tanah E. acoroides dan T. hemprichii
238.10±85.07 dan 134±21.55 g Dw m-2 , masing-masing.
Purata karbon organik dalam sedimen adalah berbeza secara signifikan
(p<0.05) dengan E. acoroides mempunyai karbon organik
yang tertinggi di lapisan sedimen lebih dalam 1.14±0.25%
Corg, manakala kedua-dua spesies lain mempunyai karbon organik
yang lebih tinggi di lapisan atas dan sederhana enapan. Hasil
kajian awal ini mencadangkan bahawa spesies saiz besar mempunyai
kandungan karbon lebih tinggi daripada spesies yang lebih kecil,
yang mencerminkan meningkatnya kadar penyerapan karbon dari laut,
dengan itu mengurangkan bajet karbon lautan. Selain itu, ia menyediakan
maklumat yang diperlukan mengenai saiz spesies yang merupakan
kunci bagi kajian menyimpan karbon pada masa hadapan di rantau
ini.
Kata
kunci: Atas permukaan tanah; bawah permukaan tanah; enapan; karbon organik;
rumpai laut
REFERENCES
Duarte, C.M.
& Chiscano, C.L. 1999. Seagrass biomass and production: A reassessment. Aquatic
Botany 65(1-4): 159- 174.
Duarte, C.M.
& Cebrian, J. 1996. The fate of marine autotropic production. Limnology
and Oceanography 41(18): 1758- 1788.
Duarte, C.M.
1991. Seagrass depth limits. Aquatic Botany 40: 363-377.
Duarte,
C.M., Losada, I.M., Hendriks, I.E., Mazarrasa, I. & Marbà, N. 2013. The
role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961-968.
Duarte,
C.M., Marbà, N., Gacia, E. & Fourqurean, J.W. 2010. Seagrass community
metabolism: Assessing the carbon sink capacity. Global Biogeochemical Cycles 24(4): GB4032. DOI. 10.1029/2010GB003793.
Duarte,
C.M., Middelburg, J.J. & Caraco, N. 2005. Major role of marine vegetation
on the oceanic carbon cycle. Biogeosciences 2: 1-8.
Duarte, C.M.,
Merino, M., Agawin, N.S.R., Uri, J., Fortes, M.D., Gallegos, M.E., Marbà, N.
& Hemminga, M.A. 1998. Root production and below ground seagrass biomass. Marine
Ecology Progress Series 171: 97-108.
Fourqurean,
J.W., Duarte, C.M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M.A.,
Apostolaki, E.T., Kendrick, G.A., Krause- Jensen, D., McGlathery, K.J. &
Serrano, O. 2012a. Seagrass ecosystems as a globally significant carbon stock. Nature
Geoscience 5: 505-509.
Fourqurean,
J.W., Kenedrick, G.A., Collins, L.S., Chambers, R.M. & Vaderklift, M.A.
2012b. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows:
Examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63:
967-983.
Kaewsrikhaw,
R., Ritchie, R.J. & Prathep, A. 2016. Variations of tidal exposures and
seasons on growth, morphology, anatomy and physiology of the seagrass Halophila
ovalis (R.Br.) Hook.f. in a seagass bed in Trang Province, Southern Thailand. Aquatic
Botany 130: 11-20.
Lavery,
P.S., Mateo, M.A., Serrano, O. & Rozaimi, M. 2013. Variability of the
carbon storage of searass habitats and its implications for global estimates of
blue carbon ecosystem service. PLoS ONE 8(9): e73748.
Macreadie,
P.I., Baird, M.E., Trevanthan-Tackett, S.M., Larkum, A.W.D. & Ralph, P.J.
2014. Quantifying and modeling the carbon seqestration capacity of seagrass
meadows - A critical assessment. Marine Pollution Bulletin 83: 430-439.
Marbà, N.,
Arias-Oritz, A., Masque, P., Kendrick, G.A., Mazarrasa, I., Bastyan, G.R.,
Garcia-Orellana, J. & Duarte, C.M. 2015. Impact of seagrass loss and
subsequent revegetation on carbon sequestration and stock. Journal of
Ecology 103: 296-302.
Marbà, N., Duarte, C.M.,
Terrados, J., Halun, Z., Gacia, E. & Fortes, M.D. 2010. Effects of seagrass
rhizospheres on seadiment redox conditions in SE Asian coastal ecosystems. Estuaries
and Coasts 33(1): 107-117.
Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M.,
Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Siliman, B.R. 2011. A
blueprint for blue carbon: Toward and improved undersanding of the role of
vegetated coastal habitats in sequestring CO2. Frontiers in Ecology and
Environment 9(10): 552-560.
Pendleton, L., Donato,
D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C.,
Fourqurean, J.W., Kauffman, J.B., Marbà, N., Megonigal, P., Pidgeon, E., Herr,
D., Gordon, D. & Baldera, A. 2012. Estimating global “Blue carbon” emssions
from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9):
e43542.
Phang, V.X.H., Chou,
L.M. & Friess, D. 2015. Ecosystem carbon stock across a tropical interdial
habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth
Surgace Process Landforms 40: 1387-1400.
Poovachinranon, S. &
Chasang, H. 1994. Community structure and biomass of seagrass beds in the
Andaman Sea. I. Mangrove-associated seagrass beds. Phuket Marine Biologucal
Center Research Bulletin 59: 53-64.
Prathep, A. 2012. Seagrass
Bed as a Carbon Sink in Ranong Biosphere Reserve and Trang - Haad Chao Mai
National Park; An Important Role of Seagrass. Man and Biosphere (MAB)
Program, UNESCO.
Prathep, A.,
Rattanachot, E. & Tuntiprapas, P. 2010. Seasonal variations in seagrass
precentage cover and biomass at Koh Tha Rai, Nakhon Si Thammarat province, Gulf
of Thailand. Sonklanakarin Journal of Science and Technology 32(5): 497.
Rattanachot, E. &
Prathep, A. 2015. Species specific effects of three morpholically different
below ground seagrasses on sediment properties. Estuarine, Coastal and Shelf
Science 167: 427-435.
Rattanachot, E. &
Prathep, A. 2011. Temporal variation in growth and reporduction of Enhalus
acoroides (L.f) Royle in a monospecific meadow in Haad Chao Mai National
Park, Trang Province, Thailand. Botanica Marina 54: 201-207.
Rozaimi, M., Lavery,
P.S., Serrano, O. & Kyrwood, D. 2016. Long-term carbon storage and its
recent loss in an estuarine Posidonia australis meadow (Albany, Western
Australia). Estuarine, Coastal and Shelf Science 171: 58-65.
RStudio Team. 2015. R
Studio: Integrated Development for R. Boston, MA: RStudio Inc.
http://www.rstudio.com/.
Supriadi, S., Kaswadji,
R.F., Bengen, D.G. & Hutomo, M. 2014. Carbon stock of seagrass community in
Barranglompo Island, Makassar. Ilmu Kelautan 19: 1-10.
Vermaat, J.E., Agawin,
N.S.R., Duarte, C.M., Fortes, M.D., Marbà, N. & Uri, J.S. 1995. Meadow
maintenance, growth and productivity of mized Philippine seagrass bed. Marine
Ecology Progress Series 124: 215-225.
Vichkovitten, T. 1998.
Biomass, growth and productivity of seagrass; Enhalus acoroides (Linn.f)
in Khug Kraben Bay, Chanthaburi, Thailand. Kasetsart Journal: Natural
Science 32: 109-115.
*Corresponding author; email: svesemenja@gmail.com