Sains Malaysiana 46(9)(2017): 1441–1447

http://dx.doi.org/10.17576/jsm-2017-4609-12

 

Carbon Content in Different Seagrass Species in Andaman Coast of Thailand

(Kandungan Karbon dalam Pelbagai Spesies Rumpai Laut di Teluk Andaman, Thailand)

 

MILICA STANKOVIC1*, JANMANEE PANYAWAI1, KAMARUDIN JANSANIT2, TIPAMAT UPANOI3 & ANCHANA PRATHEP1

 

1Seaweed and Seagrass Research Unit Department of Biology, Faculty of Science, Prince of Songkla University

90110 Hat Yai, Thailand

 

2Marine and Coastal Resources Research and Development Center, The Andaman Coast, Thailand

 

3Marine and Coastal Resources Research and Development Center, The Middle Gulf of Thailand, Thailand

 

Received: 31 August 2016/Accepted: 17 January 2017

 

ABSTRACT

Seagrass meadows have one of the highest carbon sequestration and storage capacities than any other ecosystems. Carbon that is stored in the ecosystem is accumulated in the deposited sediment as well as in the living, above and below ground biomass, with a different rate of carbon sequestration and storage between the species. The objective of this research was to investigate carbon storage in the living plants and in the sediment among species of different size in tropical waters. The samples were collected from Phuket province, Thailand, in the high density monospecific patches of different size species (Enhalus acoroides as a big, Thalassia hemprhicii as a medium and Halophila ovalis as a small size species). Total carbon and carbon stored in above and below ground, was significantly different between the species (p<0.05), with the highest values in below ground parts of E. acoroides and T. hemprichii 238.10±85.07 and 134±21.55 g Dw m-2, respectively. Average organic carbon in the sediment was significantly different (p<0.05) as well, with E. acoroides having highest organic carbon content in the deeper layers of the sediment 1.14±0.25 % Corg, while the other two species had higher organic carbon in the top and medium layers of sediment. The results of this preliminary research propose that big size species have higher carbon content than smaller species, which reflects in higher sequestration rates of carbon from the ocean, thus reducing the ocean carbon budget. Moreover, it provides necessary information on size of the species which is the key for the future carbon storage studies in the region.

 

Keywords: Above ground; below ground; organic carbon; seagrass; sediment

 

ABSTRAK

Padang rumpai laut mempunyai keupayaan menyerap karbon dan kapasiti simpanan antara yang tertinggi berbanding ekosistem yang lain. Karbon yang disimpan di dalam ekosistem yang terkumpul di dalam sedimen didepositkan di dalam kehidupan, atas dan bawah tanah biojisim, dengan kadar penyerapan dan simpanan karbon yang berbeza antara spesies. Kajian ini bertujuan untuk mengkaji penyimpanan karbon dalam tumbuh-tumbuhan dan sedimen antara spesies berbeza saiz di perairan tropika. Sampel kajian telah dikumpul dari daerah Phuket, Thailand, dalam tompok monospesifik berkepadatan tinggi spesies dengan saiz yang berbeza (Enhalus acoroides Thalassia hemprhicii yang besar, sebagai medium serta Halophila ovalis sebagai satu spesies saiz kecil). Jumlah karbon dan karbon yang disimpan di atas dan bawah tanah, adalah berbeza antara spesies (p<0.05), dengan nilai tertinggi di bawah bahagian tanah E. acoroides dan T. hemprichii 238.10±85.07 dan 134±21.55 g Dw m-2 , masing-masing. Purata karbon organik dalam sedimen adalah berbeza secara signifikan (p<0.05) dengan E. acoroides mempunyai karbon organik yang tertinggi di lapisan sedimen lebih dalam 1.14±0.25% Corg, manakala kedua-dua spesies lain mempunyai karbon organik yang lebih tinggi di lapisan atas dan sederhana enapan. Hasil kajian awal ini mencadangkan bahawa spesies saiz besar mempunyai kandungan karbon lebih tinggi daripada spesies yang lebih kecil, yang mencerminkan meningkatnya kadar penyerapan karbon dari laut, dengan itu mengurangkan bajet karbon lautan. Selain itu, ia menyediakan maklumat yang diperlukan mengenai saiz spesies yang merupakan kunci bagi kajian menyimpan karbon pada masa hadapan di rantau ini.

 

Kata kunci: Atas permukaan tanah; bawah permukaan tanah; enapan; karbon organik; rumpai laut

REFERENCES

Duarte, C.M. & Chiscano, C.L. 1999. Seagrass biomass and production: A reassessment. Aquatic Botany 65(1-4): 159- 174.

Duarte, C.M. & Cebrian, J. 1996. The fate of marine autotropic production. Limnology and Oceanography 41(18): 1758- 1788.

Duarte, C.M. 1991. Seagrass depth limits. Aquatic Botany 40: 363-377.

Duarte, C.M., Losada, I.M., Hendriks, I.E., Mazarrasa, I. & Marbà, N. 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change 3: 961-968.

Duarte, C.M., Marbà, N., Gacia, E. & Fourqurean, J.W. 2010. Seagrass community metabolism: Assessing the carbon sink capacity. Global Biogeochemical Cycles 24(4): GB4032. DOI. 10.1029/2010GB003793.

Duarte, C.M., Middelburg, J.J. & Caraco, N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2: 1-8.

Duarte, C.M., Merino, M., Agawin, N.S.R., Uri, J., Fortes, M.D., Gallegos, M.E., Marbà, N. & Hemminga, M.A. 1998. Root production and below ground seagrass biomass. Marine Ecology Progress Series 171: 97-108.

Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M.A., Apostolaki, E.T., Kendrick, G.A., Krause- Jensen, D., McGlathery, K.J. & Serrano, O. 2012a. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5: 505-509.

Fourqurean, J.W., Kenedrick, G.A., Collins, L.S., Chambers, R.M. & Vaderklift, M.A. 2012b. Carbon, nitrogen and phosphorus storage in subtropical seagrass meadows: Examples from Florida Bay and Shark Bay. Marine and Freshwater Research 63: 967-983.

Kaewsrikhaw, R., Ritchie, R.J. & Prathep, A. 2016. Variations of tidal exposures and seasons on growth, morphology, anatomy and physiology of the seagrass Halophila ovalis (R.Br.) Hook.f. in a seagass bed in Trang Province, Southern Thailand. Aquatic Botany 130: 11-20.

Lavery, P.S., Mateo, M.A., Serrano, O. & Rozaimi, M. 2013. Variability of the carbon storage of searass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8(9): e73748.

Macreadie, P.I., Baird, M.E., Trevanthan-Tackett, S.M., Larkum, A.W.D. & Ralph, P.J. 2014. Quantifying and modeling the carbon seqestration capacity of seagrass meadows - A critical assessment. Marine Pollution Bulletin 83: 430-439.

Marbà, N., Arias-Oritz, A., Masque, P., Kendrick, G.A., Mazarrasa, I., Bastyan, G.R., Garcia-Orellana, J. & Duarte, C.M. 2015. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stock. Journal of Ecology 103: 296-302.

Marbà, N., Duarte, C.M., Terrados, J., Halun, Z., Gacia, E. & Fortes, M.D. 2010. Effects of seagrass rhizospheres on seadiment redox conditions in SE Asian coastal ecosystems. Estuaries and Coasts 33(1): 107-117.

Mcleod, E., Chmura, G.L., Bouillon, S., Salm, R., Bjork, M., Duarte, C.M., Lovelock, C.E., Schlesinger, W.H. & Siliman, B.R. 2011. A blueprint for blue carbon: Toward and improved undersanding of the role of vegetated coastal habitats in sequestring CO2. Frontiers in Ecology and Environment 9(10): 552-560.

Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C., Fourqurean, J.W., Kauffman, J.B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D. & Baldera, A. 2012. Estimating global “Blue carbon” emssions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9): e43542.

Phang, V.X.H., Chou, L.M. & Friess, D. 2015. Ecosystem carbon stock across a tropical interdial habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surgace Process Landforms 40: 1387-1400.

Poovachinranon, S. & Chasang, H. 1994. Community structure and biomass of seagrass beds in the Andaman Sea. I. Mangrove-associated seagrass beds. Phuket Marine Biologucal Center Research Bulletin 59: 53-64.

Prathep, A. 2012. Seagrass Bed as a Carbon Sink in Ranong Biosphere Reserve and Trang - Haad Chao Mai National Park; An Important Role of Seagrass. Man and Biosphere (MAB) Program, UNESCO.

Prathep, A., Rattanachot, E. & Tuntiprapas, P. 2010. Seasonal variations in seagrass precentage cover and biomass at Koh Tha Rai, Nakhon Si Thammarat province, Gulf of Thailand. Sonklanakarin Journal of Science and Technology 32(5): 497.

Rattanachot, E. & Prathep, A. 2015. Species specific effects of three morpholically different below ground seagrasses on sediment properties. Estuarine, Coastal and Shelf Science 167: 427-435.

Rattanachot, E. & Prathep, A. 2011. Temporal variation in growth and reporduction of Enhalus acoroides (L.f) Royle in a monospecific meadow in Haad Chao Mai National Park, Trang Province, Thailand. Botanica Marina 54: 201-207.

Rozaimi, M., Lavery, P.S., Serrano, O. & Kyrwood, D. 2016. Long-term carbon storage and its recent loss in an estuarine Posidonia australis meadow (Albany, Western Australia). Estuarine, Coastal and Shelf Science 171: 58-65.

RStudio Team. 2015. R Studio: Integrated Development for R. Boston, MA: RStudio Inc. http://www.rstudio.com/.

Supriadi, S., Kaswadji, R.F., Bengen, D.G. & Hutomo, M. 2014. Carbon stock of seagrass community in Barranglompo Island, Makassar. Ilmu Kelautan 19: 1-10.

Vermaat, J.E., Agawin, N.S.R., Duarte, C.M., Fortes, M.D., Marbà, N. & Uri, J.S. 1995. Meadow maintenance, growth and productivity of mized Philippine seagrass bed. Marine Ecology Progress Series 124: 215-225.

Vichkovitten, T. 1998. Biomass, growth and productivity of seagrass; Enhalus acoroides (Linn.f) in Khug Kraben Bay, Chanthaburi, Thailand. Kasetsart Journal: Natural Science 32: 109-115.

 

 

*Corresponding author; email: svesemenja@gmail.com

 

 

 

previous