Sains Malaysiana 46(9)(2017): 1505–1512
http://dx.doi.org/10.17576/jsm-2017-4609-20
Effects
of Fermentation Time and pH on Soursop (Annona muricata) Vinegar
Production towards its Chemical Compositions
(Kesan
Masa Fermentasi dan pH terhadap Penghasilan Cuka Durian Belanda (Annona
muricata) dan Komposisi Kimianya)
CHIN WAI HO1, AZWAN MAT LAZIM1, SHAZRUL FAZRY2, UMI KALSUM HJ HUSSAIN ZAKI3 & SENG JOE LIM1*
1School of Chemical Sciences and Food Technology,
Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School of Biosciences
and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Food Science and Food
Safety, Food Technology Research Centre, Malaysian Agricultural Research and
Development Institute (MARDI), 43400 Serdang, Selangor Darul
Ehsan
Malaysia
Received: 31 August
2016/Accepted: 28 April 2017
ABSTRACT
Vinegar is a liquid product that
undergoes both alcoholic and acetous fermentation of sugar (carbohydrate)
sources. Soursop (Annona muricata) is easily available in Malaysia throughout the
year. However, it is also highly perishable and has a short shelf-life.
Therefore, in this research, soursop was used in the production of vinegar, to
increase its utilisation and reduce wastage. The objectives of this research
were to determine the effects of fermentation time and pH on soursop vinegar
using a 3 × 5 factorial design and to determine its chemical compositions.
It was found that pH and fermentation time showed significant (p<0.05)
effects on the reduction of sugar content and the production of acetic acid,
while only fermentation time showed a significant effect on the production of
ethanol. The interaction between factors did not exhibit any statistical
significance (p>0.05). It was evident that the sugar concentration
reduces over time and it was inversely proportional to the ethanol and acetic
acid concentrations, due to the conversion of sugar to ethanol and subsequently
acetic acid. It was found that higher pH (pH5.5) gave significantly (p<0.05)
higher acetic acid production in the vinegar, while pH has no significant (p>0.05)
effect on ethanol production. There were no significant differences (p>0.05)
in vitamin C content in all vinegar samples. Thus, it can be established that
at fermentation time of 120 h and pH5.5, more sugar was used and more ethanol
and acetic acid were produced.
Keywords: Acetous fermentation;
alcoholic fermentation; soursop; vinegar; yeast
ABSTRAK
Cuka merupakan produk cecair yang telah
melalui proses fermentasi alkohol dan aselom pada sumber gula
(karbohidrat). Durian belanda (Annona muricata) merupakan buah-buahan yang amat popular
dan senang diperoleh di Malaysia sepanjang tahun. Walau bagaimanapun,
durian belanda merupakan buah-buahan yang sangat mudah rosak dan
mempunyai jangka hayat yang pendek. Oleh itu, dalam kajian ini,
durian belanda telah digunakan untuk menghasilkan cuka untuk mengurangkan
pembaziran serta meningkatkan penggunaannya. Objektif kajian ini
adalah untuk mengenal pasti kesan masa fermentasi dan pH terhadap
penghasilan cuka durian belanda dengan menggunakan reka bentuk
eksperimen berfaktor 3 × 5 dan mengenal pasti komposisi
kimianya. Hasil daripada kajian ini menunjukkan bahawa masa fermentasi
dan pH memberi kesan yang bererti (p<0.05) ke atas kandungan
gula dan penghasilan asid asetik, manakala hanya masa fermentasi
memberi kesan yang bererti (p<0.05) ke atas penghasilan etanol.
Interaksi antara faktor tidak menunjukkan kesan yang bererti (p>0.05).
Dapat diperhatikan bahawa kepekatan gula menurun dengan peningkatan
masa fermentasi dan ia adalah berkadar songsang dengan kepekatan
etanol dan asid asetik. Ini disebabkan oleh penukaran gula kepada
etanol dan kemudiannya asid asetik. Didapati juga pada pH yang
lebih tinggi (pH5.5), penghasilan asid asetik adalah lebih tinggi
secara bererti (p<0.05), tetapi nilai pH tidak memberi kesan
bererti (p>0.05) pada penghasilan etanol. Kandungan vitamin
C tidak menunjukkan perbezaan bererti (p<0.05) dalam semua
sampel. Secara keseluruhannya, pada masa fermentasi 120 jam dan
pH5.5, didapati gula paling banyak digunakan manakala etanol dan
asid asetik paling banyak dihasilkan.
Kata
kunci: Cuka; durian belanda; fermentasi alkohol; fermentasi asetous; yis
REFERENCES
Adetuyi, F.O. &
Ibrahim, T.A. 2014. Effect of fermentation time on the phenolic, flavonoid and
vitamin C contents and antioxidant activities of okra (Abelmoschus
esculentus) seeds. Nigerian Food Journal 32(2): 128-137.
Ammar, A.A., Asmeret,
A.B. & Teamrat, A.G. 2013. A new method for rapid determination of
carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate
Polymers 97: 253-261.
Bazirake, G.W.B.,
Byarugaba, W., Tumusiime, M. & Kimono, D.A. 2014. The technology of
producing banana wine vinegar from starch of banana peels. African Journal
of Food Science and Technology 5(1): 1-5.
Betiku, E. & Taiwo,
A.E. 2015. Modeling and optimization of bioethanol production from breadfruit
starch hydrolyzate vis-à-vis response surface methodology and artificial neural
network. Renewable energy 74: 87-94.
Budak, N.H., Aykin, E.,
Seydim, A.C., Greene, A.K. & Seydim, Z.B.G. 2014. Functional properties of
vinegar. Journal of Food Science 79(5): 757-764.
Buyuksirit, T. &
Kuleasan, H. 2014. Antimicrobial agents produced by yeasts. International
Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological
Engineering 8(10): 1096-1099.
Cairns, A.M., Watson,
M., Creanor, S.L. & Foye, R.H. 2002. The pH and titratable acidity of a
range of diluting drinks and their potential effect on dental erosion. Journal
of Dentistry 30: 313-317.
Cameron, A.C. &
Windmeijer, F.A.G. 1996. R-Squared measures for count data regression models
with applications to health-care utilization. Journal of Business &
Economic Statistics 14(2): 209-220.
Chen, Q., Liu, A., Zhao,
J., Qin, O., Sun, Z. & Lin, H. 2013. Monitoring vinegar acetic fermentation
using a colorimetric sensor array. Sensors and Actuators B 183: 608-616.
Dabija, A. &
Hatnean, C.A. 2014. Study concerning the quality of apple vinegar obtained
through classical method. Journal of Agroalimentary Processes and
Technologies 20(4): 304-310.
Dung, N.T.P., Tuong,
N.H. & Phong, H.X. 2014. Study on ethanol fermentation conditions from
molasses by thermo-tolerant yeasts. International Journal of Business and
Applied Science 1: 13-22.
Food Act and Regulation.
1985. Standards and Particular Labeling Requirements for Food: Vinegar
Sauce, Chutney and Pickle. Putrajaya: Safety and Food Quality Section.
Fushimi, T., Tayama, K.,
Fukaya, M., Kotakoshi, K., Nakai, N. & Tsukamoto, Y. 2001. Acetic acid
feeding enhances glycogen repletion in liver and skeletal muscle of rats.
Journal of Nutrition 131: 1973-1977.
Heinzl, H. &
Mittlbock, M. 2003. Pseudo R-squared measures for poisson regression models
with over- or uderdispersion. Computational Statistics & Data Analysis 44(1):
253-271.
Hernandez, Y., Lobo,
M.G. & Gonzalez, M. 2006. Determination of vitamin C tropical fruits: A
comparative evaluation of methods. Journal of Food Chemistry 96:
654-664.
Iersel, M.F.M., Dieren,
B., Rombouts, F.M. & Abee, T. 1999. Flavour formation and cell physiology
during the production of alcohol-free beer with immobilized Saccharomyces
cerevisiae. Enzyme and Microbial Technology 24(7): 407- 411.
Iersel, M.F.M.,
Brouwer-Post, E., Rombouts, F.M. & Abee, T. 2000. Influence of yeast
immobilization on fermentation and aldehyde reduction during the production of
alcohol-free beer. Enzyme and Microbial Technology 26(8): 602-607.
Maris, A.J.A.,
Abbott, D.A., Bellissimi, E., Brink, J., Kuyper, M., Luttik, M.A.H., Wisselink,
H.W., Scheffers, W.A., Dijken, J.P. & Pronk, J.T. 2006. Alcoholic
fermentation of carbon sources in biomass hydrolysates by Saccharomyces
cerevisiae: Current status. Antonie Van Leeuwenhoek 90: 391-418.
Narendranath, N.V. & Power, R. 2005. Relationship between
pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied
Environmental Microbiology 71(5): 2239-2243.
Okamura, T., Ogata, T.,
Minamimoto, N., Takeno, T., Noda, H., Fukuda, S. & Ohsugi, M. 2001.
Characteristics of wine produced by mushroom fermentation. Bioscience,
Biotechnology, and Biochemistry 65(7): 1596-1600.
Okigbo, R.N. &
Obire, O. 2009. Mycoflora and production of wine from fruits of soursop (Annona
Muricata L.). International Journal of Wine Research 1: 1-9.
Pooja, S. &
Soumitra, B. 2013. Optimization of process parameters for vinegar production
using banana fermentation. International Journal of Research in Engineering
and Technology 2(9): 501-514.
Quek, M.C., Chin, N.L.
& Yusof, Y.A. 2013. Modelling of rheological behavior of soursop juice
concentrates using shear rate-temperature-concentration superposition. Journal
of Food Engineering 118: 380-386.
Qui, J., Ren, C., Fan,
J. & Li, Z. 2010. Antioxidant activities of aged oat vinegar in vitro and
in mouse serum and liver. Journal of the Science and Food Agriculture 90(11):
1951- 1958.
Rajko, V. & Janez,
H. 1999. Synthesis of higher alcohols during cider processing. Food Chemistry 67: 287-294.
Raspor, P. &
Goranovic, D. 2008. Biotechnological applications of acetic acid bacteria. Critical Reviews in Biotechnology 28:
101-124.
Tesfaye, W., Morales,
M.L., Garcia-Parrilla, M.C. & Troncoso, A.M. 2002. Wine vinegar:
Technology, authenticity and quality evaluation. Trends in Food Science and Technology 13: 12-21.
Ubeda, C., Hidalgo, C.,
Torija, M.J., Mas, A., Troncoso, A.M. & Morales, M.L. 2011. Evaluation of
antioxidant activity and total phenols index in persimmon vinegars produced by
different processes. LWT - Food Science
and Technology 44: 1591-1596.
Umme, A., Asbi, B.A., Salmah,
Y., Junainah, A.H. & Jamilah, B. 1996. Characteristics of soursop natural
puree and determination of optimum conditions for pasteurization. Food Chemistry 58(1): 119-124.
*Corresponding author; email: joe@ukm.edu.my