Sains Malaysiana 46(9)(2017): 1549–1555
http://dx.doi.org/10.17576/jsm-2017-4609-25
Sintesis dan Sifat Termal Natrium Kanji Sulfat Dioscorea
pentaphylla
(Synthesis and Thermal Properties of Dioscorea
pentaphylla Sodium Starch Sulfate)
M.S. ELMI SHARLINA, AZWAN MAT LAZIM
& W.A. YAACOB*
Pusat Pengajian Sains
Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 6 September
2016/Accepted: 29 April 2017
ABSTRAK
Kanji Dioscorea pentaphylla telah diubah suai dengan pensulfatan dan
peneutralan bagi menghasilkan natrium kanji sulfat. Tindak balas pensulfatan
dilakukan dengan asid sulfurik dalam etanol dan air pada suhu 0oC.
Darjah penukargantian dikira berdasarkan peratus karbon dan sulfur yang
ditentukan menggunakan penganalisis unsur CHNS.
Natrium kanji sulfat yang mempunyai darjah penukargantian dan peratus nisbah
berat hasil yang tinggi dipilih dan dicirikan dengan spektrum transformasi
Fourier inframerah (FT-IR) dan profil pembelauan sinar-X (XRD).
Kehadiran dua puncak getaran regangan C-O-S dan S=O dalam spektrum FT-IR dan puncak berbeza yang terhasil dalam corak difraktogram XRD membuktikan
tindak balas berlaku pada struktur kanji. Sifat termal juga ditentukan dengan
kalorimeter pengimbas pembezaan (DSC) dan analisis
termogravimetri (TGA). Natrium kanji sulfat yang
dihasilkan mempunyai kestabilan termal yang baik kerana mempunyai suhu
penguraian pada 265oC. Natrium kanji sulfat ini sesuai
dijadikan bahan tambahan dalam penghasilan hidrogel, organogel dan filem dengan
sifat anionik kerana degradasi tidak terjadi di bawah suhu ini.
Kata kunci: Dioscorea pentaphylla; natrium kanji sulfat; pensulfatan
ABSTRACT
Dioscorea pentaphylla starch
was modified by sulphation and neutralization to produce sodium
starch sulfate. The sulphation reaction was carried out with sulphuric
acid in ethanol and water at 0°C. The degree of substitution
was calculated based on the percentages of carbon and sulphur
determined using CHNS elemental
analyzer. Sodium starch sulfate which has high degree of substitution
and percentage of yield ratio by weight was chosen and characterized
by Fourier transform infrared (FT-IR) spectrum and X-ray diffraction
(XRD)
profile. The presence of two peaks belonging to stretching vibrations
of C-O-S and S=O in the FT-IR spectrum and the different of peaks
produced in the XRD diffraction pattern proved that the
reaction occurred in the starch structure. Thermal properties
were also determined using differential scanning calorimetry (DSC)
and termogravimetry analysis (TGA). Sodium starch sulfate produced
has a good thermal stability because of the decomposition temperature
of 265oC. Sodium starch sulfate is suitable as an additive in
the production of heat resistance hydrogel, organogel and film
with anionic properties because degradation does not occur below
this temperature.
Keywords: Dioscorea pentaphylla; sodium starch sulfate; sulphation
REFERENCES
Agarwal, H.K., Kumar, A., Doncel, G.F. & Parang, K. 2010.
Synthesis, antiviral and contraceptive activities of nucleoside-sodium
cellulose sulfate acetate and succinate conjugates. Bioorganic &
Medicinal Chemistry Letters 20: 6993-6997.
Airul, A., Yusof, S.M., Jamil, M.S., Abdullah, A., Yusoff, S.F.M.,
Arip, M.N.M. & Lazim, A.M. 2014. Physicochemical characterization of starch
extracted from Malaysian wild yam (Dioscorea hispida Dennst.). Emirates
Journal of Food Agriculture 26(8): 652-658.
Arueya, G.L. & Oyewale, T.M. 2015. Effect of varying degrees
of succinylation on the functional and morphological properties of starch from
acha (Digitaria exilis Kippis Stapf). Food Chemistry 177:
258-266.
Burkill, I.H. 1966. A Dictionary of the Economic Products of
the Malay Peninsula. Kuala Lumpur, Malaysia, Government of Malaysia and
Singapore. I (A-H).
Chen, G., Zhang, B., Zhao, J. & Chen, H. 2013. Improved process
for the production of cellulose sulfate using sulfuric acid/ethanol
solution. Carbohydrate Polymers 95: 332-337.
Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W.
& Wang, P. 2008. Effect of acetylation on properties of corn starch. Food
Chemistry 106: 923-928.
Chowdary, K.P.R., Enturi, V. & Rani, A.S. 2011. Preparation
and evaluation of starch phosphate - A new modified starch as a disintegrant in
tablet formulations. International Journal of Chemical Sciences 9(2):
889-899.
Christensen, N.D., Reed, C.A., Culp, T.D., Hermonat, P.L., Howett,
M.K. & Anderson, R.A. 2001. Papillomavirus microbial activities of high
molecular weight cellulose sulfate, dextran sulfate and polystyrene sulfonate. Antimicrobial
Agents and Chemotherapy 45: 3427-3432.
Cui, D., Liu, M., Zhang, B., Gong, H. & Bi, Y. 2011.
Optimization of reaction conditions for potato starch sulphate and its chemical
and structural characterization. Starch/Starke 63: 354-363.
Cui, D., Liu, M., Wu, L. & Bi, Y. 2009. Synthesis of potato
starch sulfate and optimization of the reaction condition. International
Journal of Biological Macromolecules 44: 294-299.
Dzulkefly, K.K.D., Koon, S.Y., Kassim, A., Sharif, A. &
Abdullah, A.H. 2007. Chemical modification of sago starch by solventless
esterification with fatty acid chlorides. The Malaysian Journal of
Analytical Sciences 11(2): 395-399.
Elmi Sharlina, M.S., Yaacob, W.A., Azwan, M.L., Shazrul, F., Lim,
S.J., Sapina, A., Akram, N. & Malina, K. 2017. Physicochemical properties
of starch from Dioscorea pyrifolia tubers. Food Chemistry 220:
225-232.
Gericke, M., Liebert, T. & Heinze, T. 2009. Interaction of
ionic liquids with polysaccarides, 8-synthesis of cellulose sulfates suitable
for polyelectrolyte complex formation. Macromolecular Bioscience 9(4):
343-353.
Gohdes, M. & Mischnick, P. 1998. Determination of the
substitution pattern in the polymer chain of cellulose sulfates. Carbohydrate
Research 309: 109-115.
Katsuraya, K., Shibuya, T., Inazawa, K. & Nakashima, H. 1995.
Synthesis of sulfated alkyl malto-oligosaccharides with potent inhibitory
effects on AIDS virus infection. Macromolecules 28: 6697-6700.
Liu, G.G.,
Borjihan, G., Baigude, H., Nakasima, H. & Uryu, T. 2003. Synthesis and
anti-HIV activity of sulfated astragalus polysaccharide. Polymer for
Advanced Technologies 14(7): 471-476.
Liu, X., Yu, L., Xie,
F., Li, M., Chen, L. & Li, X. 2010. Kinetics and mechanisme of thermal
decomposition of corn starches with different amylose/amylopectin ratios. Starch/Starke 62: 139-146.
Londono-Restrepo,
S.M., Rincon-Londono, N., Contreras- Padilla, M., Acosta-Osorio, A.,
Bello-Perez, L.A., Lucas- Aguirre, J.C., Quintero, O.V., Pineda-Gomez, P.,
Real-Lopez, A. & Rodriguez-Garcia, M.E. 2014. Physicochemical,
morphological and rheological characterization of Xanthosoma robustum lego-like
starch. International Journal of Biological Macromolecules 65: 222-228.
Regina, S.A.S., Wan Yaacob,
W.A., Shazrul, F., Nurul, I.H. & Azwan, M.L. 2016. Transformation of
crystalline starch nanoparticles into highly luminescent carbon nanodots:
Toxicity studies and their application. Carbohydrate Polymers 137:
488-496.
Singh, V. &
Tiwari, A. 2008. Microwave-accelerated methylation of starch. Carbohydrate
Research 343: 151-154.
Sparrow, D.B., Pa., M.,
Powers, W.R., Grove, P. & Pa., C. 1958. Method of Making
Sodium Cellulose Sulfate. US Patent No. 2 862 922.
Usher, G. 1974. A
Dictionary of Plants Used by Man. London: Constable and Company Ltd.
Wang, Y., Gao, W.
& Li, X. 2009. Carboxymethyl Chinese yam starch: Syntesis, characterisation
and influence of reaction parameters. Carbohydrate Research 344:
1764-1769.
Wang, Z.M., Li, L.,
Zheng, B.S., Normakhamatov, N. & Guo, S.Y. 2007. Preparation and
anticoagulation activity of sodium cellulose sulfate. International Journal
of Biological Macromolecules 41: 376-382.
Whistler, R.L. 1970. Process
of Preparing Cellulose Sulfate and Starch Sulfate. US Patent No. 3 507 655.
Xie, Y.L., Wang, M.J.
& Yao, S.J. 2009. Preparation and characterization of biocompatible
microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer
self-assembly. Langmuir 25(16): 8999-9005.
Yao, S. 2000. An improved
process for the preparation of sodium cellulose sulphate. Chemical
Engineering Journal 78: 199-204.
Yang, K.X., Ling, X.Q.
& Qu, T.Z. 1988. Influences of external salt on the solution viscosity of
sodium-cellulose sulfate half-ester. Acta Physico-Chimica Sinica 4(5):
523-526.
Zhang, K., Brendler,
E., Geissler, A. & Fischer, S. 2011a. Synthesis and spectroscopic
analysis of cellulose sulfates with regulable total degrees of
substitution and sulfation pattern 13C NMR and FT Raman Spectroscopy.
Polymer 52: 26-32.
Zhang, K., Peschel,
D., Baucker, E., Groth, T. & Fischer, S. 2011b. Synthesis and
characterisation of cellulose sulfates regarding the degrees of substitution,
degree of polymerisation and morphology. Carbohydrate Polymers 83:
1659-1664.
Zhu, L.Y., Lin, D.Q.
& Yao, S.J. 2010. Biodegradation of polyelectrolyte complex films composed
of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate
Polymers 82: 323-328.
Zou, C., Du, Y.M., Li,
Y. & Yang, J.H. 2008. Preparation of lacquer polysaccharide sulfates and
their antioxidant activity in vitro. Carbohydrate Polymers 73:
322-331.
*Corresponding
author; email: wanyaa@ukm.edu.my