Sains Malaysiana 46(9)(2017): 1549–1555

http://dx.doi.org/10.17576/jsm-2017-4609-25

 

Sintesis dan Sifat Termal Natrium Kanji Sulfat Dioscorea pentaphylla

(Synthesis and Thermal Properties of Dioscorea pentaphylla Sodium Starch Sulfate)

 

M.S. ELMI SHARLINA, AZWAN MAT LAZIM & W.A. YAACOB*

 

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 6 September 2016/Accepted: 29 April 2017

 

 

ABSTRAK

Kanji Dioscorea pentaphylla telah diubah suai dengan pensulfatan dan peneutralan bagi menghasilkan natrium kanji sulfat. Tindak balas pensulfatan dilakukan dengan asid sulfurik dalam etanol dan air pada suhu 0oC. Darjah penukargantian dikira berdasarkan peratus karbon dan sulfur yang ditentukan menggunakan penganalisis unsur CHNS. Natrium kanji sulfat yang mempunyai darjah penukargantian dan peratus nisbah berat hasil yang tinggi dipilih dan dicirikan dengan spektrum transformasi Fourier inframerah (FT-IR) dan profil pembelauan sinar-X (XRD). Kehadiran dua puncak getaran regangan C-O-S dan S=O dalam spektrum FT-IR dan puncak berbeza yang terhasil dalam corak difraktogram XRD membuktikan tindak balas berlaku pada struktur kanji. Sifat termal juga ditentukan dengan kalorimeter pengimbas pembezaan (DSC) dan analisis termogravimetri (TGA). Natrium kanji sulfat yang dihasilkan mempunyai kestabilan termal yang baik kerana mempunyai suhu penguraian pada 265oC. Natrium kanji sulfat ini sesuai dijadikan bahan tambahan dalam penghasilan hidrogel, organogel dan filem dengan sifat anionik kerana degradasi tidak terjadi di bawah suhu ini.

 

Kata kunci: Dioscorea pentaphylla; natrium kanji sulfat; pensulfatan

 

ABSTRACT

Dioscorea pentaphylla starch was modified by sulphation and neutralization to produce sodium starch sulfate. The sulphation reaction was carried out with sulphuric acid in ethanol and water at 0°C. The degree of substitution was calculated based on the percentages of carbon and sulphur determined using CHNS elemental analyzer. Sodium starch sulfate which has high degree of substitution and percentage of yield ratio by weight was chosen and characterized by Fourier transform infrared (FT-IR) spectrum and X-ray diffraction (XRD) profile. The presence of two peaks belonging to stretching vibrations of C-O-S and S=O in the FT-IR spectrum and the different of peaks produced in the XRD diffraction pattern proved that the reaction occurred in the starch structure. Thermal properties were also determined using differential scanning calorimetry (DSC) and termogravimetry analysis (TGA). Sodium starch sulfate produced has a good thermal stability because of the decomposition temperature of 265oC. Sodium starch sulfate is suitable as an additive in the production of heat resistance hydrogel, organogel and film with anionic properties because degradation does not occur below this temperature.

 

Keywords: Dioscorea pentaphylla; sodium starch sulfate; sulphation

REFERENCES

Agarwal, H.K., Kumar, A., Doncel, G.F. & Parang, K. 2010. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters 20: 6993-6997.

Airul, A., Yusof, S.M., Jamil, M.S., Abdullah, A., Yusoff, S.F.M., Arip, M.N.M. & Lazim, A.M. 2014. Physicochemical characterization of starch extracted from Malaysian wild yam (Dioscorea hispida Dennst.). Emirates Journal of Food Agriculture 26(8): 652-658.

Arueya, G.L. & Oyewale, T.M. 2015. Effect of varying degrees of succinylation on the functional and morphological properties of starch from acha (Digitaria exilis Kippis Stapf). Food Chemistry 177: 258-266.

Burkill, I.H. 1966. A Dictionary of the Economic Products of the Malay Peninsula. Kuala Lumpur, Malaysia, Government of Malaysia and Singapore. I (A-H).

Chen, G., Zhang, B., Zhao, J. & Chen, H. 2013. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers 95: 332-337.

Chi, H., Xu, K., Wu, X., Chen, Q., Xue, D., Song, C., Zhang, W. & Wang, P. 2008. Effect of acetylation on properties of corn starch. Food Chemistry 106: 923-928.

Chowdary, K.P.R., Enturi, V. & Rani, A.S. 2011. Preparation and evaluation of starch phosphate - A new modified starch as a disintegrant in tablet formulations. International Journal of Chemical Sciences 9(2): 889-899.

Christensen, N.D., Reed, C.A., Culp, T.D., Hermonat, P.L., Howett, M.K. & Anderson, R.A. 2001. Papillomavirus microbial activities of high molecular weight cellulose sulfate, dextran sulfate and polystyrene sulfonate. Antimicrobial Agents and Chemotherapy 45: 3427-3432.

Cui, D., Liu, M., Zhang, B., Gong, H. & Bi, Y. 2011. Optimization of reaction conditions for potato starch sulphate and its chemical and structural characterization. Starch/Starke 63: 354-363.

Cui, D., Liu, M., Wu, L. & Bi, Y. 2009. Synthesis of potato starch sulfate and optimization of the reaction condition. International Journal of Biological Macromolecules 44: 294-299.

Dzulkefly, K.K.D., Koon, S.Y., Kassim, A., Sharif, A. & Abdullah, A.H. 2007. Chemical modification of sago starch by solventless esterification with fatty acid chlorides. The Malaysian Journal of Analytical Sciences 11(2): 395-399.

Elmi Sharlina, M.S., Yaacob, W.A., Azwan, M.L., Shazrul, F., Lim, S.J., Sapina, A., Akram, N. & Malina, K. 2017. Physicochemical properties of starch from Dioscorea pyrifolia tubers. Food Chemistry 220: 225-232.

Gericke, M., Liebert, T. & Heinze, T. 2009. Interaction of ionic liquids with polysaccarides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience 9(4): 343-353.

Gohdes, M. & Mischnick, P. 1998. Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydrate Research 309: 109-115.

Katsuraya, K., Shibuya, T., Inazawa, K. & Nakashima, H. 1995. Synthesis of sulfated alkyl malto-oligosaccharides with potent inhibitory effects on AIDS virus infection. Macromolecules 28: 6697-6700.

Liu, G.G., Borjihan, G., Baigude, H., Nakasima, H. & Uryu, T. 2003. Synthesis and anti-HIV activity of sulfated astragalus polysaccharide. Polymer for Advanced Technologies 14(7): 471-476.

Liu, X., Yu, L., Xie, F., Li, M., Chen, L. & Li, X. 2010. Kinetics and mechanisme of thermal decomposition of corn starches with different amylose/amylopectin ratios. Starch/Starke 62: 139-146.

Londono-Restrepo, S.M., Rincon-Londono, N., Contreras- Padilla, M., Acosta-Osorio, A., Bello-Perez, L.A., Lucas- Aguirre, J.C., Quintero, O.V., Pineda-Gomez, P., Real-Lopez, A. & Rodriguez-Garcia, M.E. 2014. Physicochemical, morphological and rheological characterization of Xanthosoma robustum lego-like starch. International Journal of Biological Macromolecules 65: 222-228.

Regina, S.A.S., Wan Yaacob, W.A., Shazrul, F., Nurul, I.H. & Azwan, M.L. 2016. Transformation of crystalline starch nanoparticles into highly luminescent carbon nanodots: Toxicity studies and their application. Carbohydrate Polymers 137: 488-496.

Singh, V. & Tiwari, A. 2008. Microwave-accelerated methylation of starch. Carbohydrate Research 343: 151-154.

Sparrow, D.B., Pa., M., Powers, W.R., Grove, P. & Pa., C. 1958. Method of Making Sodium Cellulose Sulfate. US Patent No. 2 862 922.

Usher, G. 1974. A Dictionary of Plants Used by Man. London: Constable and Company Ltd.

Wang, Y., Gao, W. & Li, X. 2009. Carboxymethyl Chinese yam starch: Syntesis, characterisation and influence of reaction parameters. Carbohydrate Research 344: 1764-1769.

Wang, Z.M., Li, L., Zheng, B.S., Normakhamatov, N. & Guo, S.Y. 2007. Preparation and anticoagulation activity of sodium cellulose sulfate. International Journal of Biological Macromolecules 41: 376-382.

Whistler, R.L. 1970. Process of Preparing Cellulose Sulfate and Starch Sulfate. US Patent No. 3 507 655.

Xie, Y.L., Wang, M.J. & Yao, S.J. 2009. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir 25(16): 8999-9005.

Yao, S. 2000. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal 78: 199-204.

Yang, K.X., Ling, X.Q. & Qu, T.Z. 1988. Influences of external salt on the solution viscosity of sodium-cellulose sulfate half-ester. Acta Physico-Chimica Sinica 4(5): 523-526.

Zhang, K., Brendler, E., Geissler, A. & Fischer, S. 2011a. Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation pattern 13C NMR and FT Raman Spectroscopy. Polymer 52: 26-32.

Zhang, K., Peschel, D., Baucker, E., Groth, T. & Fischer, S. 2011b. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degree of polymerisation and morphology. Carbohydrate Polymers 83: 1659-1664.

Zhu, L.Y., Lin, D.Q. & Yao, S.J. 2010. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers 82: 323-328.

Zou, C., Du, Y.M., Li, Y. & Yang, J.H. 2008. Preparation of lacquer polysaccharide sulfates and their antioxidant activity in vitro. Carbohydrate Polymers 73: 322-331.

 

 

*Corresponding author; email: wanyaa@ukm.edu.my

 

 

 

 

previous