Sains Malaysiana 46(9)(2017): 1557–1563
http://dx.doi.org/10.17576/jsm-2017-4609-26
Acrylamide Optical Sensor Based on Hydrolysis Using
Bacillus sp. Strain ZK34 Containing Amidase Properties
(Sensor Optik Akrilamida Berasaskan Hidrolisis
Menggunakan Bacillus sp. Strain ZK34 yang Mengandungi
Sifat Amidase)
YEE-MAY CHONG1, MUSA AHMAD1,2*, LEE YOOK HENG1, NORZILA KUSNIN3 & MOHD YUNUS ABDUL SHUKOR3
1School of Chemical
Sciences and Food Technology, Faculty of Science and Technology
Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Industrial Chemical
Technology Programme, Faculty of Sciences and Technology
Universiti Sains Islam
Malaysia, 71800 USIM Nilai, Negeri Sembilan Darul Khusus, Malaysia
3Department of
Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received: 16 January
2017/Accepted: 11 May 2017
ABSTRACT
In this work, a new
optical screening method for acrylamide was developed. Bacterial
Bacillus sp. strain ZK 34 was used to hydrolyse acrylamide
to the corresponding acid and ammonia. Nessler's reagent was used
to detect the produced ammonia and the yellow complex formed was
treated as signal. Bacterial pellet was immobilised in the alginate
membrane. The optimum composition of alginate used is 2%. The
mass ratio of alginate:bacterial of 1:0.5 gave the optimum respond.
Optimum concentration for NaOH and Nessler's reagent were 0.075
M and 2.5 mM, respectively. The yellow complex of mercury (II)
amido-iodine formed was directly proportional to the concentrations
of acrylamide up to 50.00 ppm with the limit of detection of 1.30
ppm. This sensor shows a good reproducibility which the relatives
standard deviation (RSD)
values from 3.17-6.15%. Therefore, the detection of acrylamide
based on the amidase hydrolysis is suitable for screening this
carcinogen compound.
Keywords: Acrylamide;
amidase; Nessler's reagent; optical detection
ABSTRAK
Dalam kajian ini,
satu kaedah baharu untuk penyaringan akrilamida secara optik telah dibangunkan.
Bakteria Bacillus sp. strain ZK 34 telah digunakan untuk
menghidrolisiskan akrilamida kepada asid yang sepadan dan amonia. Reagen Nessler
telah digunakan untuk mengesan amonia yang terhasil dan pembentukan sebatian
kuning diambil kira sebagai isyarat. Palet bakteria telah dipegunkan di dalam
membran alginat. Komposisi alginat yang optimum digunakan ialah 2%. Nisbah
jisim alginat:bakteria pada 1:0.5 memberi rangsangan yang optimum. Kepekatan
NaOH dan reagen Nessler yang optimum masing-masing ialah 0.075 M dan 2.5 mM.
Sebatian kuning iaitu raksa (II) amido-iodin yang terbentuk berkadar langsung
dengan kepekatan akrilamida sehingga 50.00 ppm dengan had pengesanan 1.30 ppm.
Sensor ini menunjukkan kebolehulangan yang baik iaitu sisihan paiwai relatif (RSD)
daripada 3.17-6.15%. Maka pengesanan akrilamida berasaskan hidrolisis amidase
adalah sesuai untuk penyaringan sebatian yang karsinogen ini.
Kata kunci: Akrilamida; amidase; pengesanan optik; reagen Nessler
REFERENCES
Arip,
M.N.M., Heng, L.Y., Ahmad, M. & Ujang, S. 2013. A cell-based potentiometric
biosensor using the fungus lentinus sajor-caju for permethrin determination in
treated wood. Talanta 116: 776-781.
Batra,
B., Lata, S. & Pundir, C.S. 2013a. Construction of an improved amperometric
acrylamide biosensor based on hemoglobin immobilized onto carboxylated
multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film. Bioprocess and Biosystems Engineering 36(11): 1591-1599.
Batra,
B., Lata, S., Sharma, M. & Pundir, C.S. 2013b. An acrylamide biosensor
based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper
nanoparticles/ polyaniline hybrid film. Analytical Biochemistry 433(2):
210-217.
Batra,
B. & Pundir, C.S. 2016. Detection of acrylamide by biosensors. In Acrylamide
in Food: Analysis, Content and Potential Health Effects, edited by Gökmen,
V. Amsterdam: Academic Press. pp. 497-505.
Friedman,
M. 2003. Chemistry, biochemistry, and safety of acrylamide. A review. Journal
of Agricultural and Food Chemistry 51(16): 4504-4526.
Garabagiu,
S. & Mihailescu, G. 2011. Simple hemoglobin-gold nanoparticles modified
electrode for the amperometric detection of acrylamide. Journal of
Electroanalytical Chemistry 659(2): 196-200.
Hu,
Q., Xu, X., Fu, Y. & Li, Y. 2015. Rapid methods for detecting acrylamide in
thermally processed foods: A review. Food Control 56: 135-146.
IARC.
1994. Monographs on the Evaluation of Carcinogenic Risks to Humans, Some
Industrial Chemicals Ed. 60. Lyon, France: International Agency for
Research on Cancer.
Ignatov,
O.V., Rogatcheva, S.M., Kozulin, S.V. & Khorkina, N.A. 1997. Acrylamide and
acrylic acid determination using respiratory activity of microbial cells. Biosensors
and Bioelectronics 12(2): 105-111.
Kepekci
Tekkeli, S.E., Önal, C. & Önal, A. 2012. A review of current methods for
the determination of acrylamide in food products. Food Analytical Methods 5(1):
29-39.
Krajewska,
A., Radecki, J. & Radecka, H. 2008. A voltammetric biosensor based on
glassy carbon electrodes modified with single-walled carbon
nanotubes/hemoglobin for detection of acrylamide in water extracts from potato
crisps. Sensors 8(9): 5832-5844.
Lineback,
D.R., Coughlin, J.R. & Stadler, R.H. 2012. Acrylamide in foods: A review of
the science and future considerations. Annual Review of Food Science and
Technology 3: 15-35.
Ling,
Y.P. & Heng, L.Y. 2014. Reflectance based sensor for carrageenan utilizing
methylene blue embedded acrylic microspheres. Sensors and Actuators B:
Chemical 192: 247-252.
Nawaz,
M.S., Khan, A.A., Seng, J.E., Leakey, J.E., Siitonen, P.H. & Cerniglia,
C.E. 1994. Purification and characterization of an amidase from an
acrylamide-degrading Rhodococcus sp. Applied and Environmental
Microbiology 60(9): 3343-3348.
Paleologos,
E.K. & Kontominas, M.G. 2005. Determination of acrylamide and
methacrylamide by normal phase high performance liquid chromatography and UV
detection. Journal of Chromatography A 1077(2): 128-135.
Prabu,
C.S. & Thatheyus, A.J. 2007. Biodegradation of acrylamide employing free
and immobilized cells of Pseudomonas aeruginosa. International
Biodeterioration & Biodegradation 60: 69-73.
Shukor,
M.Y., Gusmanizar, N., Azmi, N.A., Hamid, M., Ramli, J., Shamaan, N.A. &
Syed, M.A. 2009. Isolation and characterization of an acrylamide-degrading Bacillus
cereus. Journal of Environmental Biology 30(1): 57-64.
Silva, N.A.F., Matos,
M.J., Karmali, A. & Racha, M.M. 2011. An electrochemical biosensor for
acrylamide detection: Merits and limitations. Portugaliae Electrochimica
Acta 29: 361-373.
Silva, N., Gil, D.,
Karmali, A. & Matos, M. 2009. Biosensor for acrylamide based on an
ion-selective electrode using whole cells of Pseudomonas aeruginosa containing
amidase activity. Biocatalysis and Biotransformation 27(2): 143-151.
Stobiecka, A.,
Radecka, H. & Radecki, J. 2007. Novel voltammetric biosensor for
determining acrylamide in food samples. Biosensors and Bioelectronics 22(9-10):
2165-2170.
Supian, S.M., Ling,
T.L., Heng, L.Y. & Chong, K.F. 2013. Quantitative determination of Al(III)
ion by using Alizarin Red S including its microspheres optical sensing
material. Analytical Methods 5(10): 2602-2609.
Syed, M.A., Ahmad,
S.A., Kusnin, N. & Shukor, M.Y.A. 2012. Purification and characterization
of amidase from acrylamide-degrading bacterium Burkholderia sp. strain
DR. Y27. Afican Journal of Biotechnology 11: 329-336.
Tareke, E., Rydberg,
P., Karlsson, P., Eriksson, S. & Törnqvist, M. 2002. Analysis of
acrylamide, a carcinogen formed in heated foodstuffs. Journal of
Agricultural and Food Chemistry 50(17): 4998-5006.
Timmer, B., Olthuis,
W. & Berg, A.v.d. 2005. Ammonia sensors and their applications-A review. Sensors
and Actuators B: Chemical 107(2): 666-677.
Zyzak, D.V., Sanders,
R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald, D.K., Gruber,
D.C., Morsch, T.R., Strothers, M.A., Rizzi, G.P. & Villagran, M.D. 2003.
Acrylamide formation mechanism in heated foods. Journal of Agricultural and
Food Chemistry 51(16): 4782-4787.
*Corresponding
author; email: andong@usim.edu.my