Sains Malaysiana 46(9)(2017): 1603–1609
http://dx.doi.org/10.17576/jsm-2017-4609-32
The Effect of Tocotrienol-Rich Fraction on Oxidative Liver Damage
Induced by Fenitrothion
(Kesan Fraksi Kaya Tokotrienol ke atas Kerosakan Oksidatif
Hepar Diaruh Fenitrotion)
PUTRI AYU JAYUSMAN, SITI BALKIS BUDIN*, IZATUS SHIMA TAIB
& AHMAD ROHI GHAZALI
Programme
of Biomedical Science, School of Diagnostic and Applied Health Sciences
Faculty
of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz
50300
Kuala Lumpur, Federal Territory, Malaysia
Received:
24 March 2016/ Accepted: 6 July 2017
ABSTRACT
Exposure to organophosphate
pesticide including fenitrothion (FNT)
has led to many adverse effects on human health. However, a
potent antioxidant like palm oil tocotrienol-rich fraction (TRF) can reduce oxidative damage
in various pathological conditions, could also reduce the adverse
effects by FNT. The aim of this study was to evaluate the effect of
TRF
on oxidative liver damage in FNT induce hepatotoxicity in experimental
rats. A total of 40 male Sprague-Dawley rats were randomly divided
into four groups of 10, namely control, TRF, FNT and
TRF+FNT
group. TRF
(200 mg/kg body weight) and FNT (20
m/kg body weight) were administered through oral gavage for
28 days. Corn oil which served as vehicle was given orally to
the control group. At the end of the study period, liver and
blood was taken for oxidative damage and biochemical evaluation
and histological observation. TRF supplementation prevents oxidative
liver damage by reducing the hepatic malondialdehyde (MDA)
and protein carbonyl (PCO) level significantly. Besides, TRF
also restored the endogenous antioxidants particularly
reduced glutathione (GSH),
glutathione peroxidase (GPx) and ferric reducing/antioxidant
power (FRAP). TRF also prevent liver damage
by reducing the liver enzymes, alanine aminotransferase (ALT)
and aspartate aminotransferase (AST). The attenuation of liver
damage by TRF was also showed histologically. In conclusion, TRF
supplementation showed a potential in preventing
oxidative liver damage in FNT-treated
rats by reducing the oxidative damage and improving the antioxidant
status.
Keywords: Antioxidant;
oxidative stress; palm oil; vitamin E
ABSTRAK
Pendedahan kepada
organofosfat termasuk fenitrotion (FNT) telah menyebabkan kesan
sampingan pada kesihatan manusia. Walau bagaimanapun, antioksidan yang poten
seperti fraksi kaya tokotrienol minyak sawit (TRF)
berupaya untuk mengurangkan kerosakan oksidatif yang mungkin juga berupaya
untuk mengurangkan kesan kerosakan FNT. Kajian ini dilakukan untuk
menilai kesan TRF ke atas hepatotoksiti tikus aruhan FNT.
Sebanyak 40 ekor tikus jantan Sprague-dawley dibahagikan secara rawak kepada
empat kumpulan, sepuluh ekor setiap satu iaitu kumpulan kawalan, TRF, FNT dan TRF+FNT. TRF (200
mg/kg bb) dan FNT (20 mg/kg bb) diberikan secara oral paksa selama 28
hari. Minyak jagung yang merupakan pengangkut telah diberikan secara oral
kepada kumpulan kawalan. Pada akhir kajian, hepar dan darah diambil untuk
menilai kerosakan oksidatif dan status biokimia serta pemerhatian histologi.
Suplementasi TRF melindungi hepar daripada mengalami kerosakan
oksidatif dengan menurunkan aras malondialdehid (MDA)
dan protein karbonil (PCO) hepar secara signifikan. Tambahan
pula, TRF juga mengembalikan aras antioksidan endogenus
terutamanya glutation terturun (GSH), glutation peroksidase (GPx)
dan pengurangan ferik /kuasa antioksida (FRAP). TRF juga
berupaya melindungi hepar daripada mengalami kerosakan dengan merendahkan aras
enzim hepar, alanine aminotransferae (ALT) dan aspartate
aminotransferase (AST). Pengurangan kerosakan hepar
tikus kumpulan TRF+FNT juga
telah diperhatikan secara histologi. Kesimpulannya, suplementasi TRF berpotensi
memberikan kesan perlindungan pada hepar tikus aruhan FNT dengan
mengurangkan kerosakan oksidatif dan meningkatkan status antioksidan.
Keywords: Antioksida;
minyak sawit; tekanan oksidatif; vitamin E
REFERENCES
Abdollahi,
M., Ranjbar, A., Shadnia, S., Nikfar, S. & Rezaie, A. 2004. Pesticides and
oxidative stress: A review. Med. Sci. Monit. 10(6): RA141-147.
Aebi,
H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.
Aggarwal,
B.B., Sundaram, C., Prasad, S. & Kannappan, R. 2010. Tocotrienols, the vitamin
E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 80(11): 1613 - 1631.
Al-Attar,
A.M. 2010. Physiological and histopathological investigations
on the effects of α- lipoic acid in rats exposed to malathion.
J. Biomed. Biotechnol. 2010: Article ID 203503. DOI.
10.1155/2010/203503.
Anderson,
N. & Borlak, J. 2007. Mechanisms of toxic liver injury.
In Hepatotoxicity. From Genomics to in vitro and in vivo
Models, edited by Sahu, S.C. New York: John Wiley &
Sons Ltd. pp. 191-286.
Benzie,
I.F.F. & Strain, J.J. 1999. Ferric reducing/antioxidant power assay: Direct
measure of total antioxidant activity of biological fluids and modified version
for simultaneous measurement of total antioxidant power and ascorbic acid
concentration. Methods in Enzymology 299: 15-27.
Beyer,
J. & Fridovich, I. 1987. Assaying for superoxide dismutase activity: Some
large consequences of minor changes in conditions. Anal. Biochem.
161(2): 559-566.
Bhatti,
G.K., Kiran, R. & Sandhir, R. 2010. Modulation of ethion-induced
hepatotoxicity and oxidative stress by vitamin E supplementation in male wistar
rats. Pestic. Biochem. Phys. 98: 26-32.
Budin,
S.B., Othman, F., Louis, S.R., Bakar, M.A., Das, S. & Mohamed, J. 2009. The
effects of palm oil tocotrienol rich fraction supplementation on biochemical
parameters, oxidative stress and the vascular wall of streptozotocin-induced
diabetic rats. Clinics 64(3): 235-244.
Budin,
S.B., Han, C.M., Jayusman, P.A. & Taib, I.S. 2012. Tocotrienol rich
fraction prevents fenitrothion induced pancreatic damage by restoring
antioxidant status. Pak. J. Biol. Sci. 15(11): 517-523.
Das,
B. & Mukherjee, S. 2000. Chronic toxic effects of quinalphos on some
biochemical parameters in Labeo Rohita (Ham.). Toxicol. Lett.
114(1): 11-18.
Dirican,
E.K. & Kalender, Y. 2012. Dichlorvos-induced testicular toxicity in male
rats and the protective role of vitamins C and E. Experimental and
Toxicologic Pathology 64(7): 821-830.
Elhalwagy,
M.E.A., Darwish, N.S. & Zaher, E.M. 2008. Prophylactic effect of green tea
polyphenols against liver and kidney injury induced by fenitrothion
insecticide. Pestic. Biochem. Phys. 91: 81-89.
Ellman,
G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1):
70-77.
ElMazoudy,
R.H., Attia, A.A. & AbdElGawad, H.S. 2011. Evaluation of
developmental toxicity induced by anticholinesterase insecticide,
diazinon in female rats. Development and Reproductive Toxicology
92: 534-542.
Habig,
W.H., Pabst, M.J. & Jakoby, W.B. 1974. Glutathione S-transferases
the first enzymatic step in mercapturic acid formation. J.
Biol. Chem. 249(22): 7130-7139.
Hazarika,
A., Sarkar, S.N., Hajare, S., Kataria, M. & Malik, J.K. 2003. Influence of
malathion pretreatment on the toxicity of anilofos in male rats: A biochemical
interaction study. Toxicology 185: 1-8.
Hernández,
A.F., Parrón, T., Tsatsakis, A.M., Requena, M., Alarcón,
R. & López-Guarnido, O. 2013. Toxic effects of pesticide
mixtures at a molecular level: Their relevance to human health.
Toxicology 307: 136-145.
Jaeschke,
H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D.
& Lemasters, J.J. 2002. Mechanisms of hepatotoxicity. Toxicol.
Sci. 65(2): 166-176.
Jayusman,
P.A., Budin, S.B., Ghazali, A.R., Taib, I.S. & Louis, S.R. 2014. Effects of
palm oil tocotrienol-rich fraction on biochemical and morphological alterations
of liver in fenitrothion-treated rats. Pakistan Journal of Pharmaceutical
Sciences 27(6): 1873-1880.
Kamal-Eldin,
A. & Appelqvist, L-Å. 1996. The chemistry and antioxidant properties of
tocopherols and tocotrienols. Lipids 31(7): 671-701.
Kozawa,
K., Aoyama, Y., Mashimo, S. & Kimura, H. 2009. Toxicity and actual
regulation of organophosphate pesticides. Toxin Reviews 28(4): 245-254.
Lawrence,
R.A. & Burk, R.F. 1976. Glutathione peroxidase activity in
selenium-deficient rat liver. Biochem. Bioph. Res. Co. 71(4): 952-958.
Levine,
R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A-G., Ahn, B-W.,
Shaltiel, S. & Stadtman, E.R. 1990. Determination of carbonyl content in
oxidatively modified proteins. Methods Enzymol. 186: 464-478.
Lukaszewicz-Hussain,
A. 2010. Role of oxidative stress in organophosphate insecticide toxicity -
Short review. Pest. Biochem. Physiol. 98: 145-150.
Meaklim,
J., Yang, J., Drummer, O.H., Killalea, S., Staikos, V., Horomidis, S.,
Rutherford, D., Ioannides-Demos, L.L., Lim, S. & Mclean, A.J. 2003. Fenitrothion:
Toxicokinetics and toxicologic evaluation in human volunteers. Environmental
Health Perspectives 111(3): 305-308.
Packer,
L., Weber, S.U. & Rimbach, G. 2001. Molecular aspects of
α-tocotrienol antioxidant action and cell signalling. J.
Nutr. 131(2): 369S-373S.
Qureshi,
A.A., Qureshi, N., Wright, J.J., Shen, Z., Kramer, G., Gapor,
A., Chong, Y.H., DeWitt, G., Ong, A. & Peterson, D.M. 1991.
Lowering of serum cholesterol in hypercholesterolemic humans
by tocotrienols (palmvitee). Am. J. Clin. Nutr. 53(4
Suppl): 1021S-1026S.
Saafi,
E.B., Louedi, M., Abdelfattah, E., Zakhama, A., Najjar, M.F.,
Hammamia, M. & Achour, L. 2011. Protective effect of date
palm fruit extract (Phoenix dactylifera L.) on dimethoate
induced-oxidative stress in rat liver. Exp. Toxicol. Pathol.
63: 433-441.
Stocks,
J. & Dormandy, T. 1971. The autoxidation of human red cell lipids induced
by hydrogen peroxide. Brit. J. Haematol. 20(1): 95-111.
Suzuki,
Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan, V.E. &
Packer, L. 1993. Structural and dynamic membrane properties of
α-tocopherol and α-tocotrienol: Implication to the molecular
mechanism of their antioxidant potency. Biochem. 32(40): 10692-10699.
Taib,
I.S., Budin, S.B., Ghazali, A.R., Jayusman, P.A., Louis, S.R. & Mohamed, J.
2013. Fenitrothion induced oxidative stress and
morphological alterations of sperm and testes in male sprague-dawley rats. Clinics 68(1): 93-100.
Tiwari,
V., Kuhad, A., Bishnoi, M. & Chopra, K. 2009. Chronic treatment with
tocotrienol, an isoform of vitamin E, prevents intracerebroventricular
streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in
rats. Pharmacol. Biochem. Be. 93(2): 183-189.
Tuzmen,
N., Candan, N., Kaya, E. & Demiryas, N. 2008. Biochemical effects of
chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and
lipid peroxidation in rat liver. Cell Biochemistry and Function 26(1):
119-124.
Verma,
R.S., Mehta, A. & Srivastava, N. 2007. In vivo chlorpyrifos induced
oxidative stress: Attenuation by antioxidant vitamins. Pestic. Biochem. Phys.
88(2): 191-196.
WHO.
2010. The WHO Recommended Classification of Pesticides by
Hazard and Guidelines to Classification 2009. Geneva: World
Health Organization
*Corresponding author; email: balkis@ukm.edu.my