Sains Malaysiana 46(9)(2017): 1603–1609

http://dx.doi.org/10.17576/jsm-2017-4609-32

 

The Effect of Tocotrienol-Rich Fraction on Oxidative Liver Damage Induced by Fenitrothion

(Kesan Fraksi Kaya Tokotrienol ke atas Kerosakan Oksidatif Hepar Diaruh Fenitrotion)

 

PUTRI AYU JAYUSMAN, SITI BALKIS BUDIN*, IZATUS SHIMA TAIB

& AHMAD ROHI GHAZALI

 

Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences

Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz

50300 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 24 March 2016/ Accepted: 6 July 2017

 

ABSTRACT

Exposure to organophosphate pesticide including fenitrothion (FNT) has led to many adverse effects on human health. However, a potent antioxidant like palm oil tocotrienol-rich fraction (TRF) can reduce oxidative damage in various pathological conditions, could also reduce the adverse effects by FNT. The aim of this study was to evaluate the effect of TRF on oxidative liver damage in FNT induce hepatotoxicity in experimental rats. A total of 40 male Sprague-Dawley rats were randomly divided into four groups of 10, namely control, TRF, FNT and TRF+FNT group. TRF (200 mg/kg body weight) and FNT (20 m/kg body weight) were administered through oral gavage for 28 days. Corn oil which served as vehicle was given orally to the control group. At the end of the study period, liver and blood was taken for oxidative damage and biochemical evaluation and histological observation. TRF supplementation prevents oxidative liver damage by reducing the hepatic malondialdehyde (MDA) and protein carbonyl (PCO) level significantly. Besides, TRF also restored the endogenous antioxidants particularly reduced glutathione (GSH), glutathione peroxidase (GPx) and ferric reducing/antioxidant power (FRAP). TRF also prevent liver damage by reducing the liver enzymes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The attenuation of liver damage by TRF was also showed histologically. In conclusion, TRF supplementation showed a potential in preventing oxidative liver damage in FNT-treated rats by reducing the oxidative damage and improving the antioxidant status.

 

Keywords: Antioxidant; oxidative stress; palm oil; vitamin E

 

ABSTRAK

Pendedahan kepada organofosfat termasuk fenitrotion (FNT) telah menyebabkan kesan sampingan pada kesihatan manusia. Walau bagaimanapun, antioksidan yang poten seperti fraksi kaya tokotrienol minyak sawit (TRF) berupaya untuk mengurangkan kerosakan oksidatif yang mungkin juga berupaya untuk mengurangkan kesan kerosakan FNT. Kajian ini dilakukan untuk menilai kesan TRF ke atas hepatotoksiti tikus aruhan FNT. Sebanyak 40 ekor tikus jantan Sprague-dawley dibahagikan secara rawak kepada empat kumpulan, sepuluh ekor setiap satu iaitu kumpulan kawalan, TRF, FNT dan TRF+FNT. TRF (200 mg/kg bb) dan FNT (20 mg/kg bb) diberikan secara oral paksa selama 28 hari. Minyak jagung yang merupakan pengangkut telah diberikan secara oral kepada kumpulan kawalan. Pada akhir kajian, hepar dan darah diambil untuk menilai kerosakan oksidatif dan status biokimia serta pemerhatian histologi. Suplementasi TRF melindungi hepar daripada mengalami kerosakan oksidatif dengan menurunkan aras malondialdehid (MDA) dan protein karbonil (PCO) hepar secara signifikan. Tambahan pula, TRF juga mengembalikan aras antioksidan endogenus terutamanya glutation terturun (GSH), glutation peroksidase (GPx) dan pengurangan ferik /kuasa antioksida (FRAP). TRF juga berupaya melindungi hepar daripada mengalami kerosakan dengan merendahkan aras enzim hepar, alanine aminotransferae (ALT) dan aspartate aminotransferase (AST). Pengurangan kerosakan hepar tikus kumpulan TRF+FNT juga telah diperhatikan secara histologi. Kesimpulannya, suplementasi TRF berpotensi memberikan kesan perlindungan pada hepar tikus aruhan FNT dengan mengurangkan kerosakan oksidatif dan meningkatkan status antioksidan.

 

Keywords: Antioksida; minyak sawit; tekanan oksidatif; vitamin E

REFERENCES

Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S. & Rezaie, A. 2004. Pesticides and oxidative stress: A review. Med. Sci. Monit. 10(6): RA141-147.

Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.

Aggarwal, B.B., Sundaram, C., Prasad, S. & Kannappan, R. 2010. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 80(11): 1613 - 1631.

Al-Attar, A.M. 2010. Physiological and histopathological investigations on the effects of α- lipoic acid in rats exposed to malathion. J. Biomed. Biotechnol. 2010: Article ID 203503. DOI. 10.1155/2010/203503.

Anderson, N. & Borlak, J. 2007. Mechanisms of toxic liver injury. In Hepatotoxicity. From Genomics to in vitro and in vivo Models, edited by Sahu, S.C. New York: John Wiley & Sons Ltd. pp. 191-286.

Benzie, I.F.F. & Strain, J.J. 1999. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 299: 15-27.

Beyer, J. & Fridovich, I. 1987. Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Anal. Biochem. 161(2): 559-566.

Bhatti, G.K., Kiran, R. & Sandhir, R. 2010. Modulation of ethion-induced hepatotoxicity and oxidative stress by vitamin E supplementation in male wistar rats. Pestic. Biochem. Phys. 98: 26-32.

Budin, S.B., Othman, F., Louis, S.R., Bakar, M.A., Das, S. & Mohamed, J. 2009. The effects of palm oil tocotrienol rich fraction supplementation on biochemical parameters, oxidative stress and the vascular wall of streptozotocin-induced diabetic rats. Clinics 64(3): 235-244.

Budin, S.B., Han, C.M., Jayusman, P.A. & Taib, I.S. 2012. Tocotrienol rich fraction prevents fenitrothion induced pancreatic damage by restoring antioxidant status. Pak. J. Biol. Sci. 15(11): 517-523.

Das, B. & Mukherjee, S. 2000. Chronic toxic effects of quinalphos on some biochemical parameters in Labeo Rohita (Ham.). Toxicol. Lett. 114(1): 11-18.

Dirican, E.K. & Kalender, Y. 2012. Dichlorvos-induced testicular toxicity in male rats and the protective role of vitamins C and E. Experimental and Toxicologic Pathology 64(7): 821-830.

Elhalwagy, M.E.A., Darwish, N.S. & Zaher, E.M. 2008. Prophylactic effect of green tea polyphenols against liver and kidney injury induced by fenitrothion insecticide. Pestic. Biochem. Phys. 91: 81-89.

Ellman, G.L. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1): 70-77.

ElMazoudy, R.H., Attia, A.A. & AbdElGawad, H.S. 2011. Evaluation of developmental toxicity induced by anticholinesterase insecticide, diazinon in female rats. Development and Reproductive Toxicology 92: 534-542.

Habig, W.H., Pabst, M.J. & Jakoby, W.B. 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem. 249(22): 7130-7139.

Hazarika, A., Sarkar, S.N., Hajare, S., Kataria, M. & Malik, J.K. 2003. Influence of malathion pretreatment on the toxicity of anilofos in male rats: A biochemical interaction study. Toxicology 185: 1-8.

Hernández, A.F., Parrón, T., Tsatsakis, A.M., Requena, M., Alarcón, R. & López-Guarnido, O. 2013. Toxic effects of pesticide mixtures at a molecular level: Their relevance to human health. Toxicology 307: 136-145.

Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D. & Lemasters, J.J. 2002. Mechanisms of hepatotoxicity. Toxicol. Sci. 65(2): 166-176.

Jayusman, P.A., Budin, S.B., Ghazali, A.R., Taib, I.S. & Louis, S.R. 2014. Effects of palm oil tocotrienol-rich fraction on biochemical and morphological alterations of liver in fenitrothion-treated rats. Pakistan Journal of Pharmaceutical Sciences 27(6): 1873-1880.

Kamal-Eldin, A. & Appelqvist, L-Å. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31(7): 671-701.

Kozawa, K., Aoyama, Y., Mashimo, S. & Kimura, H. 2009. Toxicity and actual regulation of organophosphate pesticides. Toxin Reviews 28(4): 245-254.

Lawrence, R.A. & Burk, R.F. 1976. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem. Bioph. Res. Co. 71(4): 952-958.

Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A-G., Ahn, B-W., Shaltiel, S. & Stadtman, E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464-478.

Lukaszewicz-Hussain, A. 2010. Role of oxidative stress in organophosphate insecticide toxicity - Short review. Pest. Biochem. Physiol. 98: 145-150.

Meaklim, J., Yang, J., Drummer, O.H., Killalea, S., Staikos, V., Horomidis, S., Rutherford, D., Ioannides-Demos, L.L., Lim, S. & Mclean, A.J. 2003. Fenitrothion: Toxicokinetics and toxicologic evaluation in human volunteers. Environmental Health Perspectives 111(3): 305-308.

Packer, L., Weber, S.U. & Rimbach, G. 2001. Molecular aspects of α-tocotrienol antioxidant action and cell signalling. J. Nutr. 131(2): 369S-373S.

Qureshi, A.A., Qureshi, N., Wright, J.J., Shen, Z., Kramer, G., Gapor, A., Chong, Y.H., DeWitt, G., Ong, A. & Peterson, D.M. 1991. Lowering of serum cholesterol in hypercholesterolemic humans by tocotrienols (palmvitee). Am. J. Clin. Nutr. 53(4 Suppl): 1021S-1026S.

Saafi, E.B., Louedi, M., Abdelfattah, E., Zakhama, A., Najjar, M.F., Hammamia, M. & Achour, L. 2011. Protective effect of date palm fruit extract (Phoenix dactylifera L.) on dimethoate induced-oxidative stress in rat liver. Exp. Toxicol. Pathol. 63: 433-441.

Stocks, J. & Dormandy, T. 1971. The autoxidation of human red cell lipids induced by hydrogen peroxide. Brit. J. Haematol. 20(1): 95-111.

Suzuki, Y.J., Tsuchiya, M., Wassall, S.R., Choo, Y.M., Govil, G., Kagan, V.E. & Packer, L. 1993. Structural and dynamic membrane properties of α-tocopherol and α-tocotrienol: Implication to the molecular mechanism of their antioxidant potency. Biochem. 32(40): 10692-10699.

Taib, I.S., Budin, S.B., Ghazali, A.R., Jayusman, P.A., Louis, S.R. & Mohamed, J. 2013. Fenitrothion induced oxidative stress and morphological alterations of sperm and testes in male sprague-dawley rats. Clinics 68(1): 93-100.

Tiwari, V., Kuhad, A., Bishnoi, M. & Chopra, K. 2009. Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharmacol. Biochem. Be. 93(2): 183-189.

Tuzmen, N., Candan, N., Kaya, E. & Demiryas, N. 2008. Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochemistry and Function 26(1): 119-124.

Verma, R.S., Mehta, A. & Srivastava, N. 2007. In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pestic. Biochem. Phys. 88(2): 191-196.

WHO. 2010. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. Geneva: World Health Organization

 

 

*Corresponding author; email: balkis@ukm.edu.my

 

 

 

previous