Sains Malaysiana 46(9)(2017): 1617–1623

http://dx.doi.org/10.17576/jsm-2017-4609-34

 

Influence of Water-to-Cement Ratio on the Compressive Strength of Cement-Biochar-Spent Ion Exchange Resins Matrix

(Pengaruh Nisbah Air-Simen terhadap Kekuatan Mampatan Matriks Simen-Bioarang-Resin Pertukaran Ion Terpakai)

 

ZALINA LAILI1*, MUHAMAD SAMUDI YASIR1 & MOHD ABDUL WAHAB YUSOF2

 

1Nuclear Science Programme, School of Applied Physics, Faculty of Science & Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia

 

Received: 7 August 2014/Accepted: 23 April 2017

 

ABSTRACT

The influence of water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent resins matrix was investigated. Spent resins waste from nuclear reactor operation was solidified using cement with w/c ranging from 0.35 to 0.90 by weight. In this study, biochar was used as a cement admixture. Some properties of spent resins and biochar were determined prior to the formulation study. Compressive strength of harden cement-biochar-spent resins matrix was determined at 28 days. The compressive strength of cement-biochar-spent resins matrix was found to depend on the w/c and the amount of spent resins added to the formulation. The immersion test of cement-biochar-spent resins matrix showed no significant effects of cracking and swelling. The compressive strength of the cement-biochar-spent resins matrix increased after two weeks in water immersion test.

 

Keyword: Compressive strength; radioactive waste; solidification; spent ion exchange resins; water-to-cement ratio

 

 

ABSTRAK

Pengaruh nisbah air-simen (w/c) terhadap kekuatan mampatan matriks simen-bioarang-resin pertukaran ion terpakai telah dikaji. Sisa resin terpakai daripada operasi reaktor nuklear telah dipejalkan dengan menggunakan simen dengan w/c daripada 0.35 hingga 0.90. Dalam kajian ini, bioarang digunakan sebagai bahan tambah kepada simen. Beberapa ciri resin terpakai dan bioarang telah ditentukan sebelum kajian formulasi. Kekuatan mampatan matriks simen-bioarang-resin terpakai yang mengeras ditentukan pada umur 28 hari. Kekuatan mampatan simen-bioarang-resin terpakai didapati bergantung kepada nisbah simen-air dan jumlah resin terpakai yang ditambah kepada formulasi. Ujian rendaman air bagi matriks simen-bioarang-resin terpakai menunjukkan tiada kesan ketara keretakan dan pengembangan berlaku. Kekuatan mampatan matriks simen-bioarang-resin terpakai didapati meningkat selepas dua minggu ujian rendaman air.

 

Kata kunci: Kekuatan mampatan; nisbah simen-air; pemejalan; resin pertukaran ion terpakai; sisa radioaktif

REFERENCES

ASTM Standards C39/C39M-09a. 2010. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens ASTM International, West Conshohocken, United States.

Atkins, M. & Glasser, F.P. 1992. Application of Portland cement-based materials to radioactive waste immobilization. Waste Management 12: 105-131.

Bentz, D.P. 2008. A review of early-age properties of cement-based materials. Cement & Concrete Research 38: 196-204.

Chen, C., Chen, G., Chen, L., Chen, Y., Lehmann, J. & McBride, B. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology 102(19): 8877-8884.

Chun, Y., Sheng, G.Y., Chiou, C.T. & Xing, B.S. 2004. Composition and sorptive properties of crop residue-derived char. Environ. Sci. Technol. 38: 4649-4655.

Glasser, F.P. 2011. Application of inorganic cements to the conditioning and immobilization of radioactive waste. In Handbook of Advanced Radioactive Waste Conditioning Technologies, edited by Ojovon, M. UK: Woodhead Publishing Limited. pp. 62-134.

Hu, J., Zhi, G. & Kejin, W. 2014. Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Construction and Building Materials 50: 657-663.

IAEA. 1985. Treatment of Spent Ion-Exchange Resins for Storage and Disposal, Tech. Rep. Series No. 254, Vienna, Austria.

IAEA. 1993. Treatment and Conditioning of Spent Ion Exchange Resins from Research Reactor, Precipitation Sludges and Other Radioactive Concentrates. IAEA-TECDOC-689. Vienna, Austria.

IAEA, 2002. Treatment of Spent Ion-Exchange Resins for Storage and Disposal. Tech, Rep. Series No. 254, Vienna, Austria.

Junfeng, L. & Jianlong, W. 2006. Advances in cement solidification technology for waste radioactive ion exchange resins: A review. Journal of Harzardous Materials 135(1-3): 443-448.

Lee, D.J. & Wilding, C.R. 1989. Waste form properties. Proceedings of the Waste Management Symposia. pp. 319- 325.

NRC-U.S. Nuclear Regulatory Commission. 1991. Waste Form Technical Position. Revision 1. U.S. Nuclear Regulatory Commission, Washington, D.C.

Ojovon, M., Varlackova, G.A., Golubeva, G.A. & Burlaka, O.N. 2011. Long-term field and laboratory leaching tests of cemented radioactive wastes. Journal of Hazardous Materials 187: 296-302.

Ouellet, S., Bussière, B., Aubertin, M. & Benzaazoua, M. 2007. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results. Cem. Concr. Res. 37(12): 1654-1665.

Saleh, H.M. 2014. Stability of cemented dried water hyacinth used for biosorption of radionuclides under various circumstances. Journal of Nuclear Materials 446: 124-133.

Sun, Q., Li, J. & Wang, J. 2011. Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite. Nuclear Engineering and Design 241: 5308-5315.

Tavcar, P., Smodis, B. & Benedik, L. 2007. Radiological characterization of low-and intermediate-level radioactive wastes. Journal of Radioanalytical & Nuclear Chemistry 273(3): 593-596.

Tong, X.J., Li, J.Y. & Xu, R.K. 2011. Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering 172(2-3): 828-834.

 

 

*Corresponding author; email: liena@nuclearmalaysia.gov.my

 

 

previous