Sains Malaysiana 46(9)(2017): 1617–1623
http://dx.doi.org/10.17576/jsm-2017-4609-34
Influence of Water-to-Cement Ratio on the Compressive Strength of
Cement-Biochar-Spent Ion Exchange Resins Matrix
(Pengaruh Nisbah Air-Simen terhadap Kekuatan Mampatan
Matriks Simen-Bioarang-Resin Pertukaran Ion Terpakai)
ZALINA LAILI1*, MUHAMAD SAMUDI YASIR1 & MOHD ABDUL WAHAB YUSOF2
1Nuclear
Science Programme, School of Applied Physics, Faculty of Science &
Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian
Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Received:
7 August 2014/Accepted: 23 April 2017
ABSTRACT
The influence of
water-to-cement ratio (w/c) on the compressive strength of cement-biochar-spent
resins matrix was investigated. Spent resins waste from nuclear reactor
operation was solidified using cement with w/c ranging from 0.35 to 0.90 by
weight. In this study, biochar was used as a cement admixture. Some properties
of spent resins and biochar were determined prior to the formulation study.
Compressive strength of harden cement-biochar-spent resins matrix was
determined at 28 days. The compressive strength of cement-biochar-spent resins
matrix was found to depend on the w/c and the amount of spent resins added to
the formulation. The immersion test of cement-biochar-spent resins matrix
showed no significant effects of cracking and swelling. The compressive
strength of the cement-biochar-spent resins matrix increased after two weeks in
water immersion test.
Keyword: Compressive
strength; radioactive waste; solidification; spent ion exchange resins;
water-to-cement ratio
ABSTRAK
Pengaruh nisbah
air-simen (w/c) terhadap kekuatan mampatan matriks simen-bioarang-resin pertukaran
ion terpakai telah dikaji. Sisa resin terpakai daripada operasi reaktor nuklear
telah dipejalkan dengan menggunakan simen dengan w/c daripada 0.35 hingga 0.90.
Dalam kajian ini, bioarang digunakan sebagai bahan tambah kepada simen.
Beberapa ciri resin terpakai dan bioarang telah ditentukan sebelum kajian
formulasi. Kekuatan mampatan matriks simen-bioarang-resin terpakai yang
mengeras ditentukan pada umur 28 hari. Kekuatan mampatan simen-bioarang-resin
terpakai didapati bergantung kepada nisbah simen-air dan jumlah resin terpakai
yang ditambah kepada formulasi. Ujian rendaman air bagi matriks
simen-bioarang-resin terpakai menunjukkan tiada kesan ketara keretakan dan
pengembangan berlaku. Kekuatan mampatan matriks simen-bioarang-resin terpakai
didapati meningkat selepas dua minggu ujian rendaman air.
Kata kunci: Kekuatan
mampatan; nisbah simen-air; pemejalan; resin pertukaran ion terpakai; sisa
radioaktif
REFERENCES
ASTM Standards C39/C39M-09a. 2010. Standard Test Method for
Compressive Strength of Cylindrical Concrete Specimens ASTM International, West
Conshohocken, United States.
Atkins, M. & Glasser, F.P. 1992. Application of Portland
cement-based materials to radioactive waste immobilization. Waste Management 12: 105-131.
Bentz, D.P. 2008. A review of early-age properties of cement-based
materials. Cement & Concrete Research 38: 196-204.
Chen, C., Chen, G., Chen, L., Chen, Y., Lehmann, J. & McBride,
B. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of
hardwood and corn straw in aqueous solution. Bioresource Technology 102(19):
8877-8884.
Chun, Y., Sheng, G.Y., Chiou, C.T. & Xing, B.S. 2004.
Composition and sorptive properties of crop residue-derived char. Environ.
Sci. Technol. 38: 4649-4655.
Glasser, F.P. 2011. Application of inorganic cements to the
conditioning and immobilization of radioactive waste. In Handbook of
Advanced Radioactive Waste Conditioning Technologies, edited by Ojovon, M.
UK: Woodhead Publishing Limited. pp. 62-134.
Hu, J., Zhi, G. &
Kejin, W. 2014. Influence of cement fineness and water-to-cement ratio on
mortar early-age heat of hydration and set times. Construction and Building
Materials 50: 657-663.
IAEA.
1985. Treatment of Spent Ion-Exchange Resins for Storage and Disposal, Tech.
Rep. Series No. 254, Vienna, Austria.
IAEA.
1993. Treatment and Conditioning of Spent Ion Exchange Resins from Research
Reactor, Precipitation Sludges and Other Radioactive Concentrates.
IAEA-TECDOC-689. Vienna, Austria.
IAEA,
2002. Treatment of Spent Ion-Exchange Resins for Storage and Disposal.
Tech, Rep. Series No. 254, Vienna, Austria.
Junfeng,
L. & Jianlong, W. 2006. Advances in cement solidification technology for
waste radioactive ion exchange resins: A review. Journal of Harzardous
Materials 135(1-3): 443-448.
Lee,
D.J. & Wilding, C.R. 1989. Waste form properties. Proceedings of the
Waste Management Symposia. pp. 319- 325.
NRC-U.S.
Nuclear Regulatory Commission. 1991. Waste Form Technical Position. Revision
1. U.S. Nuclear Regulatory Commission, Washington, D.C.
Ojovon,
M., Varlackova, G.A., Golubeva, G.A. & Burlaka, O.N. 2011. Long-term field
and laboratory leaching tests of cemented radioactive wastes. Journal of
Hazardous Materials 187: 296-302.
Ouellet,
S., Bussière, B., Aubertin, M. & Benzaazoua, M. 2007. Microstructural
evolution of cemented paste backfill: Mercury intrusion porosimetry test
results. Cem. Concr. Res. 37(12): 1654-1665.
Saleh,
H.M. 2014. Stability of cemented dried water hyacinth used for biosorption of
radionuclides under various circumstances. Journal of Nuclear Materials 446:
124-133.
Sun,
Q., Li, J. & Wang, J. 2011. Solidification of borate radioactive resins
using sulfoaluminate cement blending with zeolite. Nuclear Engineering and
Design 241: 5308-5315.
Tavcar,
P., Smodis, B. & Benedik, L. 2007. Radiological characterization of low-and
intermediate-level radioactive wastes. Journal of Radioanalytical &
Nuclear Chemistry 273(3): 593-596.
Tong,
X.J., Li, J.Y. & Xu, R.K. 2011. Adsorption of Cu (II) by biochars generated
from three crop straws. Chemical Engineering 172(2-3): 828-834.
*Corresponding author; email: liena@nuclearmalaysia.gov.my