Sains Malaysiana 46(9)(2017): 1635–1640
http://dx.doi.org/10.17576/jsm-2017-4609-36
Sinteran Hidroksiapatit dalam Atmosfera Nitrogen untuk Peningkatan
Sifat Mikrokekerasan
(Sintering of Hydroxyapatite under Nitrogen Atmosphere for
Improved Microhardness)
LEONG CHEE HUAN1*, ANDANASTUTI MUCHTAR1, TAN CHOU YONG2, MASFUEH RAZALI3 & CHIN CHUIN HAO1
1Department of Mechanical and
Materials Engineering, Faculty of Engineering and Built Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan
Malaysia
2Department of Mechanical
Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur,
Wilayah Persekutuan, Malaysia
3Periodontology Department,
Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Received:
17 November 2016/Accepted: 10 June 2017
ABSTRAK
Hidroksiapatit (HA)
adalah sejenis kalsium fosfat yang merupakan komposisi kepada kebanyakan fasa
mineral tulang dan enamel gigi. HA bersifat bioserasi dan
berkonduksi osteo selain mempunyai afiniti biologi dan kimia yang bagus untuk
tisu tulang. Dengan ciri tersebut, HA diguna secara luas sebagai
graf tulang dan bahan salut bagi implan tisu keras manusia. Walau bagaimanapun,
kerapuhan dan keliatan patah yang rendah HA tersinter menghadkan
penggunaannya dalam aplikasi bebanan yang tinggi. Kajian ini tertumpu kepada
mengenal pasti kesan atmosfera sinteran dengan gas nitrogen (N2)
ke atas sifat mekanik HA untuk aplikasi pergigian. Serbuk
nano HA dicirikan dengan menggunakan mikroskop elektron
pancaran. Cakera silinder HA dihasilkan dengan kaedah penekanan
ekapaksi. Kemudian, cakera silinder HA dikenakan tekanan isostatik
sejuk dan disinter dalam dua atmosfera sinteran yang berbeza iaitu sinteran
dalam gas N2 dan
sinteran dalam udara pada suhu 1300°C. Ketumpatan, mikrostruktur, kestabilan
fasa dan mikrokekerasan HA tersinter dicirikan. Secara
keseluruhan, sinteran dengan menggunakan gas N2 menyebabkan
pertumbuhan saiz butiran yang lebih besar dengan ketumpatan relatif dan
mikrokekerasan yang lebih tinggi jika dibandingkan dengan atmosfera sinteran
dalam udara. Dalam kajian ini, HA yang disinter dengan
menggunakan gas N2 pada
suhu 1300°C menunjukkan mikrostruktur yang lebih tumpat, ketumpatan relatif
(94%) dan mikrokekerasan (4.07 GPa) yang lebih tinggi jika berbanding dengan
sinteran dalam udara tanpa penguraian HA. Kesimpulannya, penggunaan
atmosfera sinteran dengan menggunakan gas N2 pada
suhu 1300°C dapat meningkatkan sifat kekerasan Vickers nanokomposit HA dengan
mikrostruktur yang padat.
Kata kunci: Atmosfera
sinteran; hidroksiapatit; sinteran dengan gas nitrogen
ABSTRACT
Hydroxyapatite (HA)
is a type of calcium phosphate which constitutes most of the mineral phase of
bones and tooth enamel. HA is biocompatible and
osteoconductive; it also exhibits excellent chemical and biological affinity
with bone tissues. With these characteristics, HA has
been widely used as bone graft and coating material for human hard tissue
implants. However, the brittleness and low fracture toughness of sintered HA limit
its capability in load-bearing applications. This study focuses on determining
the effect of sintering in nitrogen gas (N2)
atmosphere on the mechanical properties of HA. HA nanopowders
were characterised using a transmission electron microscope. Next, HA powders
were uniaxially pressed into pellets. The pellets were then isostatically
cold-pressed and sintered in two types of atmospheres, namely, sintering in N2 and
sintering in air at 1300°C. The density, microstructure, phase stability and
microhardness of sintered HA were characterised. Overall,
sintering in N2 led
to the formation of larger grains with higher relative density and
microhardness than sintering in air. In this study, HA sintered
in N2 at 1300°C exhibited more
compact microstructure with higher relative density (94%) and microhardness
(4.07 GPa) without decomposition in comparison to sintering in air. In
conclusion, N2 sintering
at 1300°C improves the Vickers hardness of HA by
yielding a more compact microstructure.
Keywords: Hydroxyapatite; sintering atmosphere; sintering in
nitrogen gas
REFERENCES
Akbari, B., Pirhadi Tavandashti, M. & Zandrahimi, M. 2011.
Particle size characterization of nanoparticles - a practical approach. Butirannian
Journal of Materials Science & Engineering 8(2): 48-56.
Aminzare, M., Eskandari, A., Baroonian, M.H., Berenov, A., Razavi
Hesabi, Z., Taheri, M. & Sadrnezhaad, S.K. 2013. Hydroxyapatite
nanocomposites: Synthesis, sintering and mechanical properties. Ceramics
International 39(3): 2197- 2206.
Angelo, P.C. & Subramaniam, R. 2008. Powder Metallurgy.
New Delhi: Prentice Hall of India Private Limited.
Antonio Nanci. 2003. Ten Cate’s Oral Histology: Development,
Structure, and Function. Elsevier: St Louis.
Anusavice, K.J., Shen, C. & Rawls, H.R. 2013. Phillips’
Science of Dental Materials. 12. Haryana: Elsevier.
Asif, M., Zhengyi, F., Weimin, W., Hao, W., Tiening, T. &
Shahzad Ahmad Khan. 2014. Fluoridation and sintering of hydroxyapatite material
and their mechanical properties. Journal of Wuhan University of Technology 29:
190-196.
Badica,
P., Borodianska, H., Xie, S., Zhao, T., Demirskyi, D., Li, P., Tok, A.I.Y.,
Sakka, Y. & Vasylkiv, O. 2014. Toughness control of boron carbide obtained
by spark plasma sintering in nitrogen atmosphere. Ceramics International 40(2):
3053-3061.
Chun, K.J & Lee, J.Y. 2014. Comparative study of
mechanical properties of dental restorative materials and dental hard tissues
in compressive loads. Journal of Dental Biomechanics 5: 1-6.
Curran,
D., Fleming, T., Towler, M. & Hampshire, S. 2010. Mechanical properties of
hydroxyapatite-zirconia compacts sintered by two different sintering methods. Journal
of Materials Science: Materials in Medicine 21(4): 1109-1120.
Delgado,
J.A., Morejón, L., Martínez, S., Ginebra, M.P., Carlsson, N., Fernández, E.,
Planell, J.A., Clavaguera-Mora, M.T. & Rodríguez-Viejo, J. 1999.
Zirconia-toughened hydroxyapatite ceramic obtained by wet sintering. Journal
of Materials Science: Materials in Medicine 10(12): 715-719.
Dorozhkin,
S.V. 2010. Calcium orthophosphates as bioceramics: State of the art. J.
Funct. Biomater. 1(1): 22-107.
Ergun,
C. 2011. Enhanced phase stability in hydroxylapatite/ zirconia composites with
hot isostatic pressing. Ceramics International 37(3): 935-942.
Evis,
Z. & Doremus, R.H. 2007. Effect of Yf3 on hot-pressed hydroxyapatite and
monoclinic zirconia composites. Materials Chemistry and Physics 105(1):
76-79.
Fahami,
A., Nasiri-Tabrizi, B. & Ebrahimi-Kahrizsangi, R. 2012. Synthesis of
calcium phosphate-based composite nanopowders by mechanochemical process and
subsequent thermal treatment. Ceramics International 38(8): 6729-6738.
Fang,
Z.Z. 2010. Sintering of Advanced Materials Fundamentals and Processes.
Philadelphia: Elsevier.
Feng,
P., Niu, M., Gao, C., Peng, S. & Shuai, C. 2014. A novel two-step sintering
for nano-hydroxyapatite scaffolds for bone tissue engineering. Scientific
Reports 4: 5599.
Hoffmann,
M.J., Fünfschilling, S. & Kahraman, D. 2013. Hot isostatic pressing and
gas-pressure sintering. Dlm. Ceramics Science and Technology, disunting
oleh Riedel, R. & Chen, I.W. Weinheim, Germany: Wiley-VCH Verlag GmbH &
Co. KGaA. hlm. 171-187.
Kamalanathan,
P., Ramesh, S., Bang, L.T., Niakan, A., Tan, C.Y., Purbolaksono, J., Hari
Chandran & Teng, W.D. 2014. Synthesis and sintering of hydroxyapatite
derived from eggshells as a calcium precursor. Ceramics International 40:
16349-16359.
Kang,
S.J.L. 2005. Sintering, Densification, Grain Growth and Microstructure.
Oxford: Butterworth-Heinemann.
Karimzadeh,
A., Majid, R., Ayatollahi, Bushroa, A.R. & Herliansya, M.K. 2014. Effect of
sintering temperature on mechanical and tribological properties of
hydroxyapatite measured by nanoindentation and nanoscratch experiments. Ceramics
International 40: 9159-9164.
Khoo,
W., Nor, F.M., Ardhyananta, H. & Kurniawan, D. 2015. Preparation of natural
hydroxyapatite from bovine femur bones using calcination at various
temperatures. Procedia Manufacturing 2: 196-201.
Leong,
C.H., Muchtar, A., Tan, C.Y., Razali, M. & Noor Faeizah Amat. 2014a.
Sintering of hydroxyapatite/yttria stabilized zirconia nanocomposites under
nitrogen gas for dental materials. Advances in Materials Science and
Engineering 2014: Article ID. 367267.
Leong,
C.H., Muchtar, A., Tan, C.Y. & Razali, M. 2014b. A review: Effect of
sintering method on the decomposition of hydroxyapatite and density of hydroxyapatite
zirconia composites. Applied Mechanics and Materials 465-466: 843-846.
Lim,
K.F., Andanastuti Muchtar, Rusnah Mustaffa & Chou Yong Tan. 2014. Synthesis
and characterization of hydroxyapatite-zirconia composites for dental
applications. Asian Journal of Scientific Research 7(4): 609-615.
Lim,
N.H., Kassim, A. & Huang, N.M. 2010. Preparation and characterization of
calcium phosphate nanorods using reverse microemulsion and hydrothermal
processing routes. Sains Malaysiana 39(2): 267-273.
Lin,
K. & Chang, J. 2015. Structure and properties of hydroxyapatite for
biomedical applications. Dlm. Hydroxyapatite (Hap) for Biomedical
Applications, disunting oleh Mucalo, M. Sawston, Cambridge: Woodhead
Publishing. hlm. 3-19.
Mohd
Reusmaazran Yusof, Roslinda Shamsudin, Syafiq Baharuddin & Idris Besar.
2008. Fabrication of porous hydroxyapatite for bone graft substitutes via gas
technique. Sains Malaysiana 37(4): 395-399.
Montoya,
C., Arola, D. & Ossa, E.A. 2016. Importance of tubule density to the
fracture toughness of dentin. Archives of Oral Biology 67: 9-14.
Rahaman,
M.N. 2003. Ceramic Processing and Sintering. London: Taylor &
Francis.
Tan,
C.Y., Singh, R., The, Y.C. & Tan, Y.M. 2014. The effects of
calcium-to-phosphorus ratio on the densification and mechanical properties of
hydroxyapatite ceramic. Int. J. Appl. Ceram. Technol. 12(1): 223-227.
Wang,
L.I., Wang, X.F., Yu, C.L. & Zhao, Y.Q. 2015. Effect of titanium addition
on thermal stability of hydroxyapatite/ zirconia nanocomposite. Science of
Sintering 47: 107-112.
Wu,
Shih-Ching, Hsueh-Chuan Hsu, Shih-Kuang Hsu, Ya-Chu Chang & Wen-Fu Ho.
2016. Synthesis of hydroxyapatite from eggshell powders through ballmilling and
heat treatment. Journal of Asian Ceramic Societies 4: 85-90.
*Corresponding
author; email: cheehuan@hotmail.my