Sains Malaysiana 46(9)(2017): 1667–1674
http://dx.doi.org/10.17576/jsm-2017-4609-40
Unsteady Flow of a Nanofluid Past
a Permeable Shrinking Cylinder using Buongiorno’s Model
(Aliran Tak Mantap Nanobendalir melalui Silinder Telap Mengecut menggunakan model Buongiorno)
KHAIRY ZAIMI1*, ANUAR ISHAK2 & IOAN POP3
1Institute of Engineering
Mathematics, Universiti Malaysia Perlis, 02600 Arau,
Perlis Indera Kayangan, Malaysia
2Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Mathematics, Babeş-Bolyai University, 400084
Cluj-Napoca, Romania
Received:
28 June 2016/Accepted: 18 April 2017
ABSTRACT
The unsteady laminar
boundary layer flow of a nanofluid and heat transfer
over a permeable shrinking cylinder using the Buongiorno’s nanofluid model is investigated. Using a similarity
transformation, the governing partial differential equations are transformed
into a system of ordinary differential equations and then solved numerically
using a shooting method. The numerical results are obtained for velocity,
temperature and concentration profiles as well as the skin friction
coefficient, the local Nusselt number and the local
Sherwood number. Dual solutions are found to exist in a certain range of the
suction and unsteadiness parameters. It is observed that suction parameter
increase both the skin friction coefficient and the heat transfer rate at the
surface, whereas the opposite trend is obtained for the Sherwood number. It is
also observed that suction widens the range of the unsteadiness parameter for
which the solution exists.
Keywords: Nanofluids; shrinking cylinder; suction; unsteady flow
ABSTRAK
Aliran lapisan sempadan lamina tak mantap nanobendalir dan pemindahan haba terhadap silinder telap mengecut menggunakan model nanobendalir Buongiorno dikaji. Menggunakan penjelmaan keserupaan, persamaan menakluk dalam bentuk persamaan pembezaan separa dijelmakan kepada persamaan pembezaan biasa dan diselesaikan secara berangka menggunakan kaedah tembakan. Keputusan berangka diperoleh bagi profil-profil halaju, suhu dan pecahan isi padu nanozarah serta pekali geseran kulit, nombor Nusselt setempat dan nombor Sherwood setempat. Penyelesaian dual didapati wujud bagi julat-julat tertentu parameter sedutan dan parameter ketakmantapan. Didapati parameter sedutan meningkatkan pekali geseran kulit dan kadar pemindahan haba pada permukaan, manakala telatah bertentangan diperoleh bagi nombor Sherwood. Didapati juga sedutan meluaskan julat parameter ketakmantapan yang penyelesaian wujud.
Kata kunci: Aliran tak mantap; nanobendalir; sedutan; silinder mengecut
REFERENCES
Bejan, A. 2013. Convection
Heat Transfer. 4th ed. New York: Wiley.
Buongiorno, J. 2006. Convective
transport in nanofluids. ASME Journal of Heat
Transfer 128: 240-250.
Choi, S.U.S. 1995. Enhancing thermal conductivity of fluids with
nanoparticles. In Developments and Application of Non- Newtonian Flows
FED-vol. 231/MD 66: 99-105.
Das, S.K., Choi, S.U.S., Yu, W. & Pradeep, T. 2007. Nanofluids: Science and Technology. New
Jersey: Wiley-Interscience.
Dhanai, R., Rana, P. & Kumar,
L. 2016. MHD mixed convection nanofluid flow and heat
transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno’s model. Powder Technology 288: 140-150.
Duangthongsuk, W. & Wongwises, S. 2008. Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient
for low concentration nanofluid. International
Communications in Heat and Mass Transfer 35: 1320-1326.
Fang, T., Zhang, J., Zhong, Y. &
Tao, H. 2011. Unsteady viscous flow over an expanding stretching cylinder. Chinese
Physics Letters 28. Article ID. 124707.
Fang, T., Zhang, J. & Zhong, Y.
2012. Note on unsteady viscous flow on the outside of an expanding or
contracting cylinder. Communications in Nonlinear Science and Numerical
Simulation 17: 3124-3128.
Harris, S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection
boundary layer flow near the stagnation point on a vertical surface in a porous
medium: Brinkman model with slip. Transport in Porous Media 77: 267-285.
Ishak, A., Nazar,
R. & Pop, I. 2008a. Uniform suction/blowing effect on flow and heat
transfer due to a stretching cylinder. Applied Mathematical Modelling 32:
2059-2066.
Ishak, A., Nazar,
R. & Pop, I. 2008b. Magnetohydrodynamic (MHD)
flow and heat transfer due to a stretching cylinder. Energy, Conversion and
Management 49: 3265-3269.
Kakac, S. & Pramuanjaroenkij, A. 2009. Review of convective heat
transfer enhancement with nanofluids. International
Journal of Heat and Mass Transfer 52: 3187-3196.
Jaluria, Y. & Torrance, K.E.
2003. Computational Heat Transfer. 2nd ed. New York: Taylor &
Francis.
Kuznetsov, A.V. & Nield, D.A. 2010. Natural convective boundary-layer flow of
a nanofluid past a vertical plate. International
Journal of Thermal Sciences 49: 243-247.
Merkin, J.H. 1985. On dual
solutions occurring in mixed convection in a porous medium. Journal of
Engineering Mathematics 20: 171-179.
Mohamed, M.K.A., Noar, N.A.Z.M., Salleh, M.Z. & Ishak, A.
2016. Free convection boundary layer flow on a horizontal circular cylinder in
a nanofluid with viscous dissipation. Sains Malaysiana45(2):
289-296.
Mukhopadhyay, S. 2012. Mixed convection
boundary layer flow along a stretching cylinder in porous medium. Journal of
Petroleum Science and Engineering 96-97: 73-78.
Paullet, J. & Weidman, P.D.
2007. Analysis of stagnation point flow towards a stretching sheet. International
Journal of Nonlinear Mechanics 42: 1084-1091.
Postelnicu, A. & Pop, I. 2011.
Falkner-Skan boundary layer flow of a power-law fluid
past a stretching wedge. Applied Mathematics and Computation 217:
4359-4368.
Rosca, A.V. & Pop, I. 2013.
Flow and heat transfer over a vertical permeable stretching/shrinking sheet
with a second order slip. International Journal of Heat and Mass Transfer 60:
355-364.
Simal, S., Rosselló,
C., Berna, A. & Mulet, A. 1998. Drying of
shrinking cylinder-shaped bodies. Journal of Food Engineering 37:
423-435.
Trisaksri, V. & Wongwises, S. 2007. Critical review of heat transfer
characteristics of nanofluids. Renewable,
Sustainable Energy Review 11: 512-523.
Wan Zaimi, W.M.K.A., Ishak,
A. & Pop, I. 2013. Unsteady viscous flow over a shrinking cylinder. Journal
of the King Saud University-Science 25: 143-148.
Wang, C.Y. 1988. Fluid flow due to a stretching cylinder. Physics
of Fluids 31: 466-468.
Wang, C.Y. & Ng, C. 2011. Slip flow due to a stretching
cylinder. International Journal of Non-Linear Mechanics 46: 1191- 1194.
Wang, C.Y. 2012. Natural convection on a vertical stretching
cylinder. Communications in Nonlinear Science and Numerical Simulation 17:
1098-1103.
Wang, X.Q. & Mujumdar, A.S. 2008. A review on nanofluids - Part I: Theoretical and numerical
investigations. Brazilian Journal of Chemical Engineering 25: 613-630.
Weidman, P.D., Kubitschek, D.G. &
Davis, A.M.J. 2006. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. International Journal of Engineering
Science 44: 730-737.
*Corresponding author; email: khairy@unimap.edu.my