Sains Malaysiana 47(10)(2018):
2301–2310
http://dx.doi.org/10.17576/jsm-2018-4710-06
Antibacterial and Sporicidal Activities of Syzygium polyanthum L. Extract against Bacillus cereus
Isolated from Rice
(Aktiviti Antibakteria
dan Sporisid
Ekstrak Syzygium polyanthum L.
terhadap Bacillus cereus yang Dipencil daripada
Nasi)
SUZITA
RAMLI1,
LAU
KAH
YAN2
& YAYA RUKAYADI1*
1Department of Food Science,
Faculty of Food Science and Technology, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
2Laboratory of Natural
Products, Institute of Bioscience, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
Received: 12 August 2016/Accepted:
5 June 2018
ABSTRACT
Spore-forming
bacteria, Bacillus sp., frequently been associated with the contamination
of rice and other starchy products. Spores
are more resistant to antimicrobial treatments than its vegetative
cells. The extract of Indonesian bay leaf (Syzygium polyanthum L.) was assessed for its antibacterial
and sporicidal activities against vegetative cells and spores
of B. cereus isolated from rice (25 strains). The results
showed that S. polyanthum L. extract was able to inhibit the growth of vegetative
cells of all B. cereus isolates with MICs
ranged from 0.16 to 0.63 mg/mL and can kill with MBCs
ranged from 0.31 to 2.50 mg/mL. The
bactericidal endpoint for B. cereus BC-NP.8 in time kill curve was at
1.25 mg/mL (8× MIC) after 4 h of incubation while for
B. cereus ATCC 33019 was at 2.50 mg/mL (8× MIC).
The sporicidal activity of S. polyanthum
L. extract
was not affected by different temperatures treatment and alteration
of the pHs of extract. Therefore, this indicates
that the extract was stable after exposed to pH3, 7 and 10 as
well as temperature of 50, 80, and 121°C. Observation under on
scanning electron microscope the structure of the B.
cereus ATCC 33019
spores was ruptured after being treated with 1% (w/v) S. polyanthum L. extract for 1 h. In conclusion, S.
polyanthum L.
extract had antibacterial and sporicidal activity
against vegetative cells and spores of B. cereus isolated
from rice.
Keywords: Antibacterial;
B. cereus; rice; sporicidal; Syzygium polyanthum L.
ABSTRAK
Bakteria pembentuk spora
seperti Bacillus sp., sering dikaitkan dengan pencemaran nasi dan produk-produk
yang berkanji. Spora mempunyai rintangan yang lebih tinggi terhadap
rawatan antimikrob
daripada sel-sel vegetatif. Ekstrak daun salam
(S. polyanthum L.) telah diuji
untuk aktiviti
antibakteria dan antisporisid terhadap sel vegetatif dan
spora 25 B. cereus yang dipencil
daripada nasi.
Ekstrak S. polyanthum L. boleh merencat pertumbuhan
semua Bacillus sp. yang
diuji dengan MIC dalam lingkungan 0.16 hingga 0.63 mg/mL dan boleh membunuh semua Bacillus sp. yang diuji
dengan MBC adalah
dalam lingkungan
0.31 hingga 2.50 mg/mL. Titik akhir bakterisid
B. cereus BC-NP.8 untuk keluk masa-pembunuhan ialah 1.25 mg/mL (8× MIC) selepas
inkubasi selama
4 jam dan untuk B. cereus ATCC
33019 ialah pada
2.50 mg/mL (8× MIC). Aktiviti sporisid
ekstrak S. polyanthum L.
tidak terjejas
dengan pengubahan pH ekstrak dan rawatan
suhu yang berbeza.
Keputusan kajian ini menunjukkan bahawa ekstrak tersebut adalah stabil terhadap perubahan kepada pH3, 7 dan 10 serta suhu
50, 80 dan 121°C. Berdasarkan pemerhatian
dengan mikroskop
elektron imbasan, struktur spora B. cereus ATCC 33019
musnah selepas
dirawat dengan 1% (w/v) ekstrak S. polyanthum L.
selama 1 jam. Secara keseluruhannya,
ekstrak S.
polyanthum L.
menunjukkan potensi
dalam aktiviti antibakteria dan sporisid terhadap sel vegetatif dan
spora Bacillus
sp.
Kata kunci: Antibakterial;
B. cereus; nasi; sporisid;
Syzygium polyanthum
L.
REFERENCES
Altayar, M. & Sutherland, A.D.
2006. Bacillus cereus is common in the environment but
emetic toxin producing isolates are rare. Journal of Applied
Microbiology 100(1): 7-14.
Alzoreky, N.S. & Nakahara, K. 2003. Antibacterial activity of extracts from some edible plants commonly
consumed in Asia. International Journal of Food Microbiology
80(3): 223-230.
Ballantyne, B. & Jordan, S.L. 2001. Toxicological, medical and industrial hygiene
aspects of glutaraldehyde with particular reference to its biocidal
use in cold sterilization procedures. Journal of Applied
Toxicology 21(2): 131-151.
Barker, G.C., Malakar, P.K. & Peck,
M.W. 2005. Germination and growth from spores: Variability
and uncertainty in the assessment of food borne hazards. International
Journal of Food Microbiology 100(1-3): 67-76.
Ciarciaglini, G.P.J., Hill, K., Davies, P.J., McClure, D., Kilsby,
M.H. & Brown, P.J. 2000. Germination-induced
bioluminescence, a route to determine the inhibitory effect of
a combination preservation treatment on bacterial spores.
Applied Environment Microbiology 66:
3735-3742.
Cho, W.I., Choi, J.B., Lee, K., Chung, M.S. & Pyun, Y.R. 2008. Antimicrobial
activity of torilin isolated from Torilis japonica fruit against Bacillus subtilis.
Journal of Food Science 73(2): 37-46.
Choi, S., Kim, H., Kim, Y., Kim, B.S., Beuchat,
L.R. & Ryu, J.H. 2014. Fate of Bacillus cereus and naturally occurring microbiota
on milled rice as affected by temperature and relative humidity.
Food Microbiology 38(0): 122-127.
Clinical and Laboratory Standards Institute (CLSI). 2012. Reference method for dilution antimicrobial susceptibility
tests for bacteria that grow aerobically; approved standard-ninth
edition; CLSI document M07-A9. Clinical and
Laboratory Standards Institute, Wayne, PA, USA.
Jun, H., Kim, J., Bang, J., Kim, H., Beuchat,
L.R. & Ryu, J.H. 2013. Combined effects of plant extracts in inhibiting
the growth of Bacillus cereus in reconstituted infant rice
cereal. International Journal of Food Microbiology 160(3):
260-266.
Kato, E., Nakagomi, R., Gunawan-Puteri, M.D.P.T. & Kawabata, J. 2013. Identification of hydroxychavicol and
its dimers, the lipase inhibitors contained in the Indonesian
spice, Eugenia polyantha. Food Chemistry 136(3-4):
1239-1242.
Kida, N., Mochizuki, Y. & Taguchi, F. 2004. An effective iodide formulation for killing Bacillus and
Geobacillus spores over a wide temperature range.
Journal of Applied Microbiology 97(2): 402-409.
Kim, B., Bang, J., Kim, H., Kim, Y., Kim, B.S., Beuchat, L.R. & Ryu, J.H. 2014. Bacillus cereus and Bacillus thuringiensis spores
in Korean rice: Prevalence and toxin production as affected by
production area and degree of milling. Food Microbiology 42(0):
89-94.
Kim, S.A., Lee, M.K., Park, T.H. & Rhee, M.S. 2013. A combined intervention using fermented ethanol and supercritical
carbon dioxide to control Bacillus cereus and Bacillus
subtilis in rice. Food Control 32(1): 93-98.
Lau, K.Y., Zainin, N.S., Abas, F. &
Rukayadi, Y. 2014. Antibacterial and sporicidal activity of Eugenia polyantha Wight
against Bacillus cereus and Bacillus subtilis.
International Journal of Current Microbiology and Applied Sciences
3(12): 499-510.
Leggett, M.J., McDonnell, G., Denyer, S.P.,
Setlow, P. & Maillard,
J.Y. 2012. Bacterial spore structures
and their protective role in biocide resistance. Journal
of Applied Microbiology 113(3): 485-498.
Negi, P.S. 2012. Plant extracts for
the control of bacterial growth: Efficacy, stability and safety
issues for food application. International Journal of Food
Microbiology 156(1): 7-17.
Rukayadi, Y., Lee, K., Han, S., Kim, S. & Hwang, J.K. 2009. Antibacterial and sporicidal activity of macelignan
isolated from nutmeg (Myristica
fragrans Houtt.) against Bacillus
cereus. Food Science and Biotechnology 18(5): 1301-1304.
Rukayadi, Y., Shim, J.S. & Hwang, J.K. 2008. Screening of Thai medicinal plants for anticandidal
activity. Mycoses 51(4): 308-312.
Rukayadi, Y.
& Hwang, J.K. 2007.
The effects of xanthorrhizol
on the morphology of Candida cells examined by scanning electron
microscopy. Microbiology Indonesia 1(2): 98-100.
Rutala, W.A.
& Weber, D.J. 1999. Disinfection of endoscopes review of new chemical
sterilants used for high-level disinfection. Infection
Control 20(01): 69-76.
Sandra,
A., Afsah-Hejri, L., Tunung,
R., Tuan Zainazor, T.C., Tang, J.Y.H.,
Ghazali, F.M., Nakaguchi, Y., Nishibuchi, M. & Son, R. 2012. Bacillus
cereus and Bacillus thuringiensis in ready-to-eat cooked
rice in Malaysia. International Food Research Journal
19(3): 829-836.
Setiawan, C. P. 2002. Effect of chemical and physical treatment of the antimicrobial activity
of leaves (Syzygium polyanthum (Wight) Walp).
Thesis. Faculty of Agricultural Technology,
Bogor Agricultural University, Bogor
(Unpublished).
Sumono, A.
& Wulan, A.S. 2008. The
use of bay leaf (Eugenia polyantha Wight) in dentistry.
Dental Journal 41(3): 147-150.
Tan,
I.S. & Ramamurthi, K.S. 2013. Spore formation in Bacillus
subtilis. Environmental Microbiology Reports 6(3):
212-225.
*Corresponding
author; email: yaya_rukayadi@upm.edu.my