Sains Malaysiana 47(10)(2018):
2325–2336
http://dx.doi.org/10.17576/jsm-2018-4710-09
Effects
of PLGA Nanofibre on Osteoarthritic Chondrocytes
(Kesan Gentian Nano PLGA ke atas Sel Kondrosit
Osteoartritis)
B.S.
SHAMSUL1,
S.R.
CHOWDHURY1*,
B.H.I.
RUSZYMAH2
& B.M.Y. NOR
HAMDAN3
1Tissue
Engineering Centre, Faculty of Medicine, Universiti
Kebangsaan Malaysia, Clinical Block, Jalan
Yaacob Latiff,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department
of Physiology, Faculty of Medicine, Universiti
Kebangsaan Malaysia, Pre-clinical Block, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
3Department
of Orthopedic & Traumatology, Faculty of Medicine, Universiti
Kebangsaan Malaysia, Clinical Block,
Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory
Malaysia
Received:
31 March 2018/Accepted: 5 June 2018
ABSTRACT
Chondrocytes obtained
from osteoarthritis (OA) joints has been recognized as an
abnormal cell; however, it’s proven to have potential in supporting
cartilage regeneration. We have isolated chondrocytes from OA joints
(OAC)
and expanded chondrocytes growth medium (CGM). The growth kinetic, immunophenotyping and cell multilineage
differentiation were analyzed to confirm the OAC stemness. The optimal condition to developed PLGA
nanofiber with ratio 50:50 were 20% concentration
of PLGA,
flow rate with 0.3 mL/h, 10 kv voltage
and 10 cm distance from nozzle to the collector. The toxicity
level, scanning electron microscopy (SEM) and q-PCR analysis was performed in
the present study. OAC fulfills the minimal criteria to
be known to have stem cell as the cell easily adheres to the culture
plate, shows high expression (≥95%) for CD13, CD29,
CD44,
CD73
and CD90 and less expression (≤2%) for CD45
and HLA-DR and potentially induced to mesodermal multilineage, which is osteocytes, adipocytes, and chondrocytes.
Toxicity test showed no adverse effect of PLGA towards
the cell. Based on the cell-PLGA nanofiber interaction, difference
in fiber size will influence the proliferation of the cell. Nanofibers
with 100 nm in size showed high proliferation of OAC and
better gene and protein expression compared to monolayer culture.
Thus, we concluded that OAC has the potential to be used in cartilage
regeneration based on the presence of stem cell markers as similar
to the human bone marrow. The cartilage regeneration will be more
efficient if OAC
cultured on 3D microenvironment as showed in the
present study.
Keywords: Cytoskeleton;
differentiation; electrospinning; osteoarthritis; tissue engineering
of cartilage
ABSTRAK
Sel kondrosit yang diperoleh daripada sendi pesakit osteoartritis (OA)
terbukti berpotensi
untuk membantu pertumbuhan semula tulang rawan. Walau bagaimanapun,
sel kondroit
mempunyai kecenderungan untuk melalui proses pembezaan semasa pengkulturan, maka persekitaran tiga dimensi diperlukan untuk mengatasi masalah pembezaan tersebut. Oleh itu, sel kondrosit
yang diisolasi daripada
sendi OA (OAC)
telah dikulturkan dalam media CGM dan
proses analisis seperti
pertumbuhan kinetik dan pencirian sel
stem dilakukan sebelum
disemai ke atas
gentian nano yang dihasilkan.
Gentian nano PLGA dipilih
berdasarkan ciri-ciri
versetilnya berserta kondisi optimum kepekatan cecair, kadar
aliran, voltan
dan jarak dari
jarum picagari
ke pengumpul yang digunakan. Tahap ketoksikan, pengimbasan
mikroskop elektron
(SEM)
dan analisis
q-PCR
juga telah dilakukan
dalam kajian ini.
Keputusan kajian
menunjukkan, OAC memenuhi
kriteria minimum memiliki
ciri sel stem dan
ia mudah berpoliferasi di atas plat kultur, ekspresi penanda sel stem yang tinggi (≥95%) untuk CD13,
CD29,
CD44,
CD73
dan CD90 (≤2%) CD45 dan HLA-DR serta berpotensi diinduksi kepada leluhur mesoderm. Gentian nano elektrospun tidak menunjukkan kesan toksik kepada
sel malah
mempengaruhi proliferasi sel semasa pengkulturan.
Berdasarkan interaksi
gentian nano PLGA dan
OAC,
perbezaan saiz
gentian akan mempengaruhi proliferasi sel. Gentian nano bersaiz 100 nm telah menunjukkan berlakunya proliferasi OAC yang lebih
tinggi dan
ekspresi gen dan protein yang lebih baik berbanding
dengan kultur
monolapisan. Kesimpulannya, OAC berpotensi sebagai sumber sel untuk penjanaan
semula tulang
rawan berdasarkan kepada ekspresi penanda sel stem seperti yang diekspresikan oleh sumsum tulang
manusia. Penjanaan
tulang rawan akan lebih berkesan jika OAC dikulturkan di atas persekitaran mikro tiga dimensi seperti
yang ditunjukkan di dalam
kajian ini.
Kata kunci: Elektrospun;
kejuruteraan tisu
tulang rawan; perbezaan;
osteoartritis; sitorangka
REFERENCES
AlFaqeh, H., Nor
Hamdan, B.M., Chen, H.C., Aminuddin,
B.S. & Ruszymah, B.H. 2012. The
potential of intra-articular injection of chondrogenic-induced
bone marrow stem cells to retard the progression of osteoarthritis
in a sheep model. Experimental Gerontology 47(6):
458-464.
Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. 2004. Identification
of mesenchymal progenitor cells in normal and osteoarthritic human
articular cartilage. Arthritis and Rheumatism 50(5): 1522-1532.
Anderson, D., Markway, B.D., Bond, D.,
McCarthy, H.E. & Johnstone, B. 2016.
Responses to altered oxygen tension are distinct between human
stem cells of high and low chondrogenic capacity. Osteoarthritis
and Cartilage 24. Stem Cell Research & Therapy:
S164.
Caron, M.M., Emans, P.J., Coolsen, M.M., Voss, L., Surtel,
D.A., Cremers, A., van Rhijn,
L.W. & Welting, T.J. 2012. Redifferentiation
of dedifferentiated human articular chondrocytes: Comparison of
2D and 3D cultures. Osteoarthritis and Cartilage 20(10):
1170-1178.
Chua, K.H., Aminuddin, B.S., Fuzina, N.H. & Ruszymah, B.H.I.
2005. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the
formation of high quality tissue engineered human hyaline cartilage.
European Cells and Materials 9: 58-67.
Darling, E.M. & Kyriacos, A.A. 2003. Articular cartilage bioreactors and bioprocesses.
Tissue Engineering 9(1): 9-26.
Dimida, S., Barca, A., Cancelli,
N., de Benedictis, V., Raucci,
M.G. & Demitri, C. 2017. Effects of genipin concentration on cross-linked
chitosan scaffolds for bone tissue engineering: Structural characterization
and evidence of biocompatibility features. International Journal
of Polymer Science 2017: 8410750.
Dua, R., Comella,
K., Butler, R., Castellanos, G., Brazille,
B., Claude, A., Agarwal, A., Liao, J. & Ramaswamy,
S. 2016. Integration of stem cell to chondrocyte-derived
cartilage matrix in healthy and osteoarthritic states in the presence
of hydroxyapatite nanoparticles. Plos
One 11(2): e0149121.
Fernandes, A.M., Herlofsen,
S.R., Karlsen, T.A., Küchler,
A.M., Fløisand, Y. & Brinchmann,
J.E. 2013. Similar properties of chondrocytes
from osteoarthritis joints and mesenchymal stem cells from healthy
donors for tissue engineering of articular cartilage. PLoS
One 8(5): e62994.
Gentile, P., Chiono, V., Carmagnola, I. & Hatton, P.V. 2014. An overview of poly(lactic-co-glycolic)
acid (plga)-based biomaterials for bone
tissue engineering. International Journal of Molecular Sciences
15(3): 3640-3659.
Hafez, P., Jose, S., Chowdhury, S.R., Ng, M.H., Ruszymah, B.H. & Abdul Rahman Mohd,
R. 2016. Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells
using a combination of basic fibroblast growth factor and hydrocortisone.
Cell Biology International 40(1): 55-64.
Hasmad, H.N., Yusof, M.R., Mohd
Razi, Z.R., Haji Idrus,
R.B. & Chowdhury, S.R. 2018. Human
amniotic membrane with aligned electrospun
fiber as scaffold for aligned tissue regeneration. Tissue Engineering
Part C: Methods 24(6): 368-378.
Jiang, Y. & Tuan, R.S. 2015. Origin and function of cartilage stem/progenitor cells in osteoarthritis.
Nature Reviews: Rheumatology 11(4): 206-212.
Khorsand-Ghayeni, M., Sadeghi, A., Nokhasteh,
S. & Molavi, A.M. 2016. Collagen modified PLGA nanofibers as wound-dressing. Proceedings of the 6th International Conference on Nanostructures
(ICNS6). March.
Kino-oka Masahiro, Yoshikatsu
Maeda, Yuka Ota, Shino Yashiki, Katsura
Sugawara, Takeyuki Yamamoto & Masahito
Taya. 2005. Process design of chondrocyte cultures with monolayer
growth for cell expansion and subsequent three-dimensional growth
for production of cultured cartilage. Journal of Bioscience
and Bioengineering 100(1): 67-76.
Koh Yong Gon,
Yun Jin Choi, Sae
Kwang Kwon, Yong Sang Kim & Jee
Eun Yeo. 2015. Clinical
results and second-look arthroscopic findings after treatment
with adipose-derived stem cells for knee osteoarthritis.
Knee Surgery, Sports Traumatology, Arthroscopy
: Official Journal of the ESSKA 23(5): 1308-1316.
Félix Lanao, R.P., Jonker, A.M., Wolke,
J.G.C., Jansen, J.A. van Hest, J.C.M.
& Leeuwenburgh, S.C.G. 2013. Physicochemical properties and
applications of poly(lactic-co-glycolic
acid) for use in bone regeneration. Tissue Engineering Part
B: Reviews 19(4): 380-390.
Langer, R. & Vacanti, J.P. 1993. Tissue engineering. Science 260(5110):
920-926.
Liu Mei, Xin Zeng, Chao Ma, Huan Yi, Zeeshan Ali, Xianbo Mou, Song Li, Yan Deng & Nongyue
He. 2017. Injectable hydrogels for cartilage and bone tissue engineering.
Bone Research 5: 17014.
Liu, S.J., Kau, Y.C., Chou, C.Y., Chen,
J.K., Wu, R.C. & Yeh, W.L. 2010. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. Journal
of Membrane Science 355(1-2): 53-59.
Madeira, C., Santhagunam, A., Salgueiro, J.B. & Cabral, J.M.S. 2015. Advanced cell therapies for articular cartilage
regeneration. Trends in Biotechnology 33(1): 35-42.
Mano, J.F., Sousa, R.A., Boesel, L.F.,
Neves, N.M. & Reis, R.L. 2004. Bioinert,
biodegradable and injectable polymeric matrix composites for hard
tissue replacement: State of the art and recent developments.
Composites Science and Technology 64(6): 789-817.
Nazempour, A. & Van Wie, B.J. 2016. Chondrocytes,
mesenchymal stem cells, and their combination in articular cartilage
regenerative medicine. Annals of Biomedical Engineering 44(5):
1325-1354.
Noriega,
S.E., Hasanova, G.I., Schneider, M.J.,
Larsen, G.F. & Subramanian, A. 2012. Effect of fiber
diameter on the spreading, proliferation and differentiation of
chondrocytes on electrospun chitosan
matrices. Cells Tissues Organs 195(3): 207-221.
Oda,
T., Sakai, T., Hiraiwa, H., Hamada,
T., Ono, Y., Nakashima, M., Ishizuka, S., Matsukawa, T., Yamashita,
S., Tsuchiya, S. & Ishiguro, N. 2016. Osteoarthritis-derived
chondrocytes are a potential source of multipotent progenitor
cells for cartilage tissue engineering. Biochem.
Biophys.
Res. Commun. 479(3): 469-475.
Pak,
J., Lee, J.H., Park, K.S., Jeong, B.C.
& Lee, S.H. 2016. Regeneration of cartilage in human
knee osteoarthritis with autologous adipose tissue-derived stem
cells and autologous extracellular matrix. BioResearch
Open Access 5(1): 192-200.
Sadeghi, A.R.,
Nokhasteh, S., Molavi,
A.M., Khorsand-Ghayeni, M., Naderi-Meshkin,
H. & Mahdizadeh, A. 2016. Surface
modification of electrospun plga
scaffold with collagen for bioengineered skin substitutes.
Materials Science and Engineering C 66: 130-137.
Schrobback,
K., Klein, T.J., Schuetz, M., Upton,
Z., Leavesley, D.I. & Malda, J.
2011.
Adult human articular chondrocytes in a microcarrier-based
culture system: Expansion and redifferentiation.
Journal of Orthopaedic Research 29(4):
539-546.
Shin,
H.J., Lee, C.H., Cho, I.H., Kim, Y-J., Lee, Y-J., Kim, I.A., Park,
K-D., Yui, N. & Shin, J-W. 2006. Electrospun PLGA nanofiber scaffolds for articular cartilage
reconstruction: Mechanical stability, degradation and cellular
responses under mechanical stimulation in vitro. Journal
of Biomaterials Science: Polymer Edition 17(1): 103-119.
Thapa,
A., Miller, D.C., Webster, T.J. & Haberstroh,
K.M. 2003. Nano-structured polymers enhance bladder smooth muscle
cell function. Biomaterials 24(17): 2915-2926.
Ude, C.C.,
Shamsul, B.S., Ng, M.H., Chen, H.C.,
Ohnmar, H., Amaramalar, S.N., Rizal,
A.R., Johan, A., Norhamdan, M.Y., Azizi, M., Aminuddin, B.S. &
Ruszymah, B.H.I. 2018. Long-term evaluation of osteoarthritis
sheep knee, treated with tgf-β3
and bmp-6 induced multipotent stem cells. Exp. Gerontol.
104: 43-51.
Ude,
C.C., Shamsul, B.S., Ng, M.H., Chen,
H.C., Johan, A., Norhamdan, M.Y., Aminuddin,
B.S. & Ruszymah, B.H.I. 2014. Cartilage
regeneration by chondrogenic induced
adult stem cells in osteoarthritic sheep model. PloS
One 9(6): e98770.
Wang,
Y., Wu., S.H., Kuss,
M.A., Streubel, P.N. & Duan, B. 2017.
Effects of hydroxyapatite and hypoxia on chondrogenesis
and hypertrophy in 3d bioprinted ADMSC
laden constructs. ACS Biomaterials Science & Engineering
3(5): 826-835.
Yoshimoto,
H., Shin, Y.M., Terai, H. & Vacanti,
J.P. 2003. A biodegradable
nanofiber scaffold by electrospinning and its potential for bone
tissue engineering. Biomaterials 24(12): 2077-2082.
Zhang,
Q., Ji, Q., Wang, X., Kang, L., Fu, Y., Yin, Y., Li, Z., Liu,
Y., Xu, X. & Wang, Y. 2015. SOX9 is a regulator of ADAMTSs-induced
cartilage degeneration at the early stage of human osteoarthritis.
Osteoarthritis and Cartilage 23(12): 2259-2268.
*Corresponding author; email: shiplu@ppukm.ukm.edu.my