Sains Malaysiana 47(10)(2018):
2501–2507
http://dx.doi.org/10.17576/jsm-2018-4710-27
Chronic Consumption of Fructose Dysregulates Genes Related
to Glucose and Lipid Metabolism in Prostate Tissue
(Pengambilan Kronik
Fruktosa Mengganggu
Kawalatur Gen-gen Berkaitan dengan Metabolisme Glukosa dan Lipid dalam Tisu Prostat)
NORHAZLINA
ABDUL
WAHAB1*,
MARJANU
HIKMAH
ELIAS1,
RAJA
AFFENDI
RAJA
ALI2
& NORFILZA MOHD MOKHTAR1
1Department of Physiology, Faculty of Medicine,
Pusat Perubatan
Universiti Kebangsaan Malaysia,
Jalan Yaacob Latiff,
56000 Cheras, Kuala Lumpur, Federal
Territory, Malaysia
2Department of Medicine, Faculty of Medicine, Pusat Perubatan Universiti Kebangsaan Malaysia,
Jalan Yaacob Latiff,
Bandar Tun Razak,
56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Received:
30 March 2018/Accepted: 20 June 2018
ABSTRACT
Fructose is commonly
used as a taste enhancer in many processed foods. Excessive
fructose consumption is highly associated with obesity and development
of cancer particularly prostate cancer. This study aimed to
investigate the biochemical and molecular changes in the prostate
tissue of rats treated with 20% fructose for six months. A total
of 18 rats weighted 200-250 g were divided into two groups,
where each group consisted of 9 rats. Control group is given
normal diet, while the treated group was given normal diet and
20% fructose in drinking water. After six months of treatment,
both groups were sacrificed for further analysis. Body weight,
blood pressure and glucose were measured. Lipid profiles were
determined using quantitative colorimetric assay. Transcripts
level of 11β-hydroxysteroid dehydrogenase
type 1 (11β-HSD1), leptin (LEP), angiopoietin 1 (ANGPT1),
microRNA (miR)-34a, miR-10b and miR-192
were determined using quantitative PCR, while the protein levels of 11β-HSD1 and leptin were determined using ELISA.
The results showed that 20% fructose diet significantly increased
blood glucose level as compared to the control (p<0.05). The transcript
levels of LEP and miR-192 were significantly lower
in the fructose-treated group as compared to the control (p<0.05).
There was a significant linear relationship between prostate
LEP and
serum LDL/VLDL level as well as between the level
of prostate LEP and serum total cholesterol level
(p<0.05). Thus, our results showed that chronic consumption
of fructose could down-regulate LEP and miR-192 expression in
prostate tissue, and promote higher accumulation of fat in the
tissue. Additionally, downregulation of miR-192 has been reported
to be associated with the pathogenesis of prostate cancer. Thus,
it can be concluded that long-term fructose diet leads to higher
blood glucose level and down-regulation of LEP
and miR-192 expression in prostate tissue.
Keywords: Chronic consumption;
fructose; leptin; miR-192; prostate; obesity
ABSTRAK
Fruktosa lazimnya digunakan
sebagai penambah
perisa dalam kebanyakan
makanan yang diproses. Pengambilan fruktosa secara
berlebihan sangat
berkait rapat dengan
keobesan dan pembentukan kanser terutamanya kanser prostat. Kajian ini bertujuan
untuk mengkaji perubahan biokimia dan molekul dalam
tisu prostat
tikus yang dirawat dengan fruktosa 20% selama enam bulan.
Sejumlah
18 ekor tikus
dengan berat 200-250 g dibahagikan kepada dua kumpulan dengan
setiap kumpulan
mengandungi 9 ekor tikus. Kumpulan kawalan diberi diet normal, sementara kumpulan rawatan diberi diet normal dan 20% fruktosa dalam minuman. Selepas enam bulan rawatan,
kedua-dua kumpulan
dikorbankan untuk analisis selanjutnya. Berat tubuh, tekanan
darah dan
aras glukosa
diukur. Profil lipid ditentukan menggunakan
asai kolorimetrik
kuantitatif. Aras transkripsi
11β-hidroksisteroid dehidrogenase
jenis 1 (11β-HSD1),
leptin (LEP), angiopoietin 1 (ANGPT1),
mikroRNA (miR)-34a,
miR-10b dan miR-192 ditentukan
menggunakan kuantitatif PCR,
sementara aras
protein 11β-HSD1 dan leptin
ditentukan menggunakan
ELISA.
Keputusan menunjukkan
bahawa diet fruktosa 20% secara signifikan meningkatkan aras
glukosa darah
berbanding kawalan (p<0.05). Aras transkripsi
LEP
dan miR-192 adalah
lebih rendah
secara signifikan bagi kumpulan yang dirawat dengan fruktosa berbanding kawalan (p<0.05).
Terdapat hubungan
linear yang signifikan antara
aras LEP tisu prostat dengan
aras LDL/VLDL serum (p<0.05)
dan antara
aras LEP tisu prostat dengan aras kolesterol total dalam serum (p<0.05). Dengan itu,
kajian ini
menunjukkan bahawa pengambilan fruktosa untuk tempoh yang lama mengurangkan ekspresi LEP
dan miR-192 pada tisu prostat serta
menggalakkan pengumpulan
lemak pada tisu. Malah, ekspresi miR-192 yang rendah dilaporkan mempunyai kaitan dengan patogenesis
kanser prostat.
Maka, dapat disimpulkan
bahawa diet fruktosa
jangka panjang boleh mengakibatkan peningkatan aras
gula dalam
darah dan mengurangkan
ekspresi LEP dan
miR-192 pada tisu prostat.
Kata kunci: Fruktosa;
leptin; miR-192; keobesan; pengambilan kronik;
prostat
REFERENCES
Aida
Azlina, A., Farihah,
H.S., Qodriyah, H.M.S. & Nur Azlina, M.F. 2009. Effects of Piper sarmentosum
water extract on 11β-hydroxysteroid
dehydrogenase type 1 bioactivity in ovariectomy-induced
obese rats. International Journal of Pharmacology 5(6):
362-369. doi: 10.3923/ijp.2009.362.369.
Arner,
P. & Kulyte, A. 2015. MicroRNA regulatory networks in human adipose tissue and obesity.
Nat. Rev. Endocrinol. 11(5):
276-288. doi:10.1038/nrendo.2015.25.
Azmir, A., Norfilza, M.M., Norizam, S., Nor
Anita, M.M.N. & Zaiton, Z. 2014.
Identification of circulating microRNAs in young men with central
obesity. Asian Pacific Journal of Tropical Disease
4(3): 236.
Basciano,
H., Federico, L. & Adeli, K. 2005. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr.
Metab.
2(1): 5. doi:10.1186/1743-7075-2-5.
Bocarsly,
M.E., Powell, E.S., Avena, N.M. &
Hoebel, B.G. 2010. High-fructose
corn syrup causes characteristics of obesity in rats: Increased
body weight, body fat and triglyceride levels. Pharmacol. Biochem. Behav. 97(1): 101-106. doi:10.1016/j.
pbb.2010.02.012.
Bursac, B.N., Vasiljevic, A.D., Nestorovic, N.M.,
Velickovic, N.A., Vojnovic
Milutinovic, D.D., Matic,
G.M. & Djordjevic, A.D. 2014.
High-fructose diet leads to visceral adiposity and hypothalamic
leptin resistance in male rats - do glucocorticoids play a role?
J. Nutr. Biochem.
25(4): 446-455. doi:10.1016/j.jnutbio.2013.12.005.
Chartoumpekis,
D.V., Zaravinos, A., Ziros,
P.G., Iskrenova, R.P., Psyrogiannis,
A.I., Kyriazopoulou, V.E. & Habeou,
I.G. 2012. Differential expression of microRNAs
in adipose tissue after long-term high-fat diet-induced obesity
in mice. PLoS One
7(4): e34872. doi:10.1371/journal.pone.0034872.
Dehwah,
M.A., Xu, A. & Huang, Q. 2012. MicroRNAs and type 2 diabetes/obesity. J. Genet. Genomics
39(1): 11-18. doi:10.1016/j.jgg.2011.11.007.
Frankenberry,
K.A., Somasundar, P., McFadden, D.W.
& Vona-Davis, L.C. 2004. Leptin induces
cell migration and the expression of growth factors in human
prostate cancer cells. Am. J. Surg. 188(5): 560-565.
doi:10.1016/j. amjsurg.2004.07.031.
Ibrahim,
F.F., Jamal, R., Syafruddin, S.E.,
Ab Mutalib, N.S., Saidin, S., Md Zin,
R.R., Hossain Mollah, M.M. & Mokhtar,
N.M. 2015. MicroRNA-200c and microRNA-31 regulate proliferation,
colony formation, migration and invasion in serous ovarian cancer.
J. Ovarian Res. 8: 56. doi:10.1186/ s13048-015-0186-7.
Johnson, R.J., Segal, M.S., Sautin, Y., Nakagawa, T., Feig, D.I., Kang, D.H., Gersch, M.S., Benner, S. & Sanchez-Lozada,
L.G. 2007. Potential role of sugar (fructose)
in the epidemic of hypertension, obesity and the metabolic syndrome,
diabetes, kidney disease, and cardiovascular disease.
Am. J. Clin. Nutr. 86(4): 899-906.
Khella,
H.W., Bakhet, M., Allo,
G., Jewett, M.A., Girgis, A.H., Latif,
A., Girgis, H., Von Both, I., Bjarnason,
G.A. & Yousef, G.M. 2013. miR-192,
miR-194 and miR-215: A convergent microRNA network suppressing
tumor progression in renal cell carcinoma. Carcinogenesis
34(10): 2231-2239. doi:10.1093/carcin/bgt184.
Kolderup,
A. & Svihus, B. 2015. Fructose
metabolism and relation to atherosclerosis, type 2 diabetes,
and obesity. J. Nutr. Metabvol. 2015: 823081.
doi:10.1155/2015/823081.
Lakhan,
S.E. & Kirchgessner, A. 2013. The emerging role of dietary fructose in obesity and cognitive decline.
Nutr. J. 12: 114. doi:10.1186/1475-2891-12-114.
Lee, S.E., Kim, J.M., Jeong, M.K., Zouboulis, C.C. &
Lee, S.H. 2013. 11beta-hydroxysteroid dehydrogenase type
1 is expressed in human sebaceous glands and regulates glucocorticoid-induced
lipid synthesis and toll-like receptor 2 expression in SZ95
sebocytes. Br. J. Dermatol.
168(1): 47-55. doi:10.1111/bjd.12009.
Li,
M.D. 2011. Leptin and beyond: An odyssey to the central control
of body weight. Yale J. Biol. Med. 84(1): 1-7.
Mamikutty, N., Thent, Z.C., Sapri, S.R., Sahruddin, N.N., Mohd Yusof, M.R. & Farihah, H.S.
2014. The establishment of metabolic syndrome model by induction
of fructose drinking water in male Wistar
rats. Biomed. Res. Int. 2014: 263897. doi: 10.1155/2014/263897.
Noda, T., Kikugawa,
T., Tanji, N., Miura, N., Asai,
S., Higashiyama, S. & Yokohama, M. 2015. Long term exposure
to leptin enhances the growth of prostate cancer cells. Int.
J. Oncol. 46(4): 1535-1542. doi:10.3892/ijo.2015.2845.
Paulsen, S.K., Pedersen, S.B., Fisker, S. & Richelsen, B. 2007.
11Beta-HSD type 1 expression in human adipose tissue: Impact
of gender, obesity, and fat localization. Obesity (Silver
Spring) 15(8): 1954-1960. doi:10.1038/oby.2007.233.
Ribeiro,
R., Monteiro, C., Catalan, V., Hu, P., Cunha, V., Rodriguez,
A., Gomez-Ambrosi, J., Fraga, A., Principe,
P., Lobato, C., Lobo, F., Morais,
A., Silva, V., Sanchez- Magalhaes,
J., Oliveira, J., Pina, F., Lopes, C., Medeiros, R. & Fruhbeck,
G. 2012. Obesity and prostate cancer: Gene expression signature
of human periprostatic adipose tissue. BMC Med. 10: 108. doi:10.1186/1741-7015-10-108.
Rumussen, J.J. 1992. Fructose
and related food carbohydrates. Sources, intake,
absorption, and clinical implications. Scand. J. Gastroenterol.
27(10): 819-828.
Saeed,
S., Bonnefond, A., Manzoor,
J., Shabir, F., Ayesha, H., Philippe,
J., Durand, E., Crouch, H., Sand, O., Ali, M., Butt, T., Rathore,
A.W., Falchi, M., Arslan,
M. & Froguel, P. 2015. Genetic
variants in LEP, LEPR, and MC4R explain 30% of severe obesity
in children from a consanguineous population. Obesity (Silver
Spring) 23(8): 1687-1695. doi:10.1002/
oby.21142.
Satoh, N., Yamada, Y., Kinugasa, Y. & Takakura, N. 2008. Angiopoietin-1
altered tumor growth by stabilizing blood vessels or by promoting
angiogenesis. Cancer Sci. 99(12): 2373-2379. doi:10.1111/j.1349-7006.2008.00961.x.
Saykally,
J.N., Dogan, S., Cleary, M.P. &
Sanders, M.M. 2009.
The ZEB1 transcription factor is a novel repressor of adiposity
in female mice. PLoS One
4(12): e8460. doi:10.1371/journal. pone.0008460.
Senanayake, U.,
Das, S., Vesely, P., Alzoughbi,
W., Frohlich, L.F., Chowdhury, P.,
Leuschner, I., Hoefler, G. &
Guertl, B. 2012. miR-192, miR-194,
miR-215, miR-200c and miR-141 are downregulated and their common
target ACVR2B is strongly expressed in renal childhood neoplasms.
Carcinogenesis 33(5): 1041-1021. doi:10.1093/carcin/bgs126.
Shabana
& Shahida Hasnain. 2016.
The p.N103K mutation of leptin (LEP) gene and severe early onset
obesity in Pakistan. Biol. Res. 49: 23. doi:10.1186/s40659-016-0082-7.
Sjostrand, M., Jansson, P.A., Palming, J., de Schoolmeester,
J., Gill, D., Rees, A., Sjogren, L.,
Persson, T. & Eriksson, J.W. 2010. Repeated
measurements of 11beta-HSD-1 activity in subcutaneous adipose
tissue from lean, abdominally obese, and type 2 diabetes subjects
- no change following a mixed meal. Horm. Metab. Res. 42(11): 798-802. doi:10.1055/s-0030-1254134
Spencer,
S.J. & Tilbrook, A. 2011. The glucocorticoid contribution
to obesity. Stress 14(3): 233-246. doi:10.3109/
10253890.2010.534831.
Sun, J., Fan, Z., Lu, S., Yang, J., Hao, T. & Huo, Q. 2016. MiR- 192 suppresses the tumorigenicity
of prostate cancer cells by targeting and inhibiting nin one binding protein. Int. J. Mol. Med. 37(2):
485-492. doi:10.3892/ijmm.2016.2449.
Viesti, A.C.R., Salgado
Jr., W., Pretti da Cunha, Tirapelli,
D. & dos Santos, J.S. 2014. The expression
of LEP, LEPR, IGF1 and IL10 in obesity and the relationship
with microRNAs. PLoS One 9(4): e93512. doi:10.1371/journal.pone.0093512.
Williams,
M.D. & Mitchell, G.M. 2012. MicroRNAs
in insulin resistance and obesity. Exp.
Diabetes Res. doi:10.1155/2012/484696.
Wong, S.K., Chin, K.Y., Farihah, H.S., Fairus, A. &
Ima-Nirwana, S. 2016. Animal models
of metabolic syndrome: A review. Nutrition & Metabolism
13: 65. doi:10.1186/s12986-016- 0123-9
*Corresponding author; email: hazlina@ukm.edu.my
|