Sains Malaysiana 47(10)(2018): 2557–2563
http://dx.doi.org/10.17576/jsm-2018-4710-32
Evaluating Physical and Biological Characteristics of Glutaraldehyde
(GA) Cross-Linked Nano-Biocomposite Bone Scaffold
(Penilaian Pencirian Fizikal dan Biologi Perancah Tulang Nano-Biokomposit
Dipindah Silang dengan Glutaraldehid (GA))
HEMABARATHY
BHARATHAM*,
SITI
FATHIAH
MASRE,
LEO
HWEE
XIEN
& NURNADIAH AHMAD
Program
of Biomedical Science, School of Diagnostic and Applied Health
Science, Faculty of Health Sciences, Universiti Kebangsaan
Malaysia, Jalan Raja Abdul Aziz, 50300 Kuala Lumpur, Federal
Territory, Malaysia
Received:
28 February 2018/Accepted: 28 June 2018
ABSTRACT
In vivo stability of biomaterial-based
bone scaffolds often present a significant drawback in the
development of materials for tissue engineering purpose. Previously
developed nanobiocomposite bone scaffold using alginate and
nano cockle shell powder has shown ideal characteristics.
However, it showed high degradation rate and reduced stability
in an in vivo setting. In this study, we aim to observe
the effect of cross-linking glutaraldehyde (GA)
in three different concentrations of 0.5%, 1% and 2% during
the fabrication process as a potential factor in increasing
scaffold stability. Microstructure observations of scaffolds
using scanning electron microscope (SEM)
showed all scaffolds crossed linked with GA and control had an ideal pore
size ranging from 166.8-203.5 μm. Increase in porosity
compared to the control scaffolds was observed in scaffolds
cross-linked with 2% GA
which also presented better structural integrity
as scored through semi-quantitative methods. Tested pH values
during the degradation period showed that scaffolds from all
groups remained within the range of 7.73-8.76. In vitro
studies using osteoblast showed no significant changes
in cell viability but a significant increase in ALP enzyme levels in scaffold cross-linked
with 2% GA. The calcium content released from
all scaffold showed significant differences within and between
the groups. It can be concluded that the use of GA in the preparation stage of
the scaffold did not affect the growth and proliferation of
osteoblast and use of 2% GA showed improved scaffold structural integrity and porosity.
Keywords: Bone scaffold;
glutaraldehyde; nanobiocomposite; osteoblast
ABSTRAK
Kestabilan in vivo perancah tulang berasas biobahan merupakan salah satu
kelemahan yang ketara dalam fabrikasi bahan untuk tujuan kejuruteraan
tisu. Perancah tulang nanobiokomposit yang telah dibangunkan
terlebih dahulu menggunakan alginat dan serbuk nano cengkerang
kerang menunjukkan ciri-ciri ideal sebagai bahan pengganti
tulang. Walau bagaimanapun, perancah tersebut menunjukkan
kadar degradasi yang tinggi dan pengurangan dalam kestabilan struktur
dalam keadaan in vivo. Kajian ini bertujuan untuk memperhatikan
kesan penggunaan glutaraldehid (GA) sebagai bahan pindah silang dalam
kepekatan 0.5%, 1% dan 2% terhadap perancah yang dibentuk.
Kajian mikrostruktur menggunakan mikroskopi elektron imbasan
(SEM) menunjukkan kesemua perancah
tulang kajian GA dan kawalan mempunyai saiz liang antara
166.8-203.5 μm yang bersesuaian untuk tujuan penggunaan.
Peningkatan keliangan berbanding perancah kawalan diperhatikan
untuk perancah yang dipindah silang dengan 2% GA yang turut menunjukkan peningkatan
dalam kestabilan struktur melalui kaedah pemarkahan semi kuantitatif.
Nilai pH yang diukur sepanjang tempoh kajian degradasi menunjukkan
julat pH berada antara 7.73-8.76 untuk semua kumpulan kajian
dan kawalan. Kajian in vitro menggunakan osteoblas
tidak menunjukkan sebarang perubahan signifikan kepada keviabelan
sel tetapi terdapat peningkatan dalam aktiviti enzim ALP untuk perancah yang dipindah silang
dengan 2% GA. Perbezaan signifikan pembebasan kalsium
juga diperhatikan antara dan dalam semua kumpulan kajian dan
kawalan. Secara keseluruhan, didapati penggunaan GA dalam pembentukan perancah
tidak memberikan kesan terhadap percambahan dan pertumbuhan
osteoblas pada perancah tulang dan peningkatan dalam integriti
struktur dan keliangan perancah diperhatikan dengan penggunaan
GA pada kepekatan 2%.
Kata kunci: Glutaraldehid; nanobiokomposit; osteoblas; perancah tulang
REFERENCES
Abu, Z., Baha, F. &
Mohamed, N. 2011. Cockle shell-based biocomposite scaffold
for bone tissue engineering. Regenerative Medicine and
Tissue Engineering - Cells and Biomaterials 17: 364-390.
Azami,
M., Rabiee, M. & Moztarzadeh, F. 2010. Glutaraldehyde
crosslinked gelatin/hydroxyapatite nanocomposite scaffold,
engineered via compound techniques. Polymer Composites
31(12): 2112-2120.
Bharatham,
H., Bakar, M.Z.A., Perimal, E.K., Yusof, L.M. & Hamid,
M. 2014. Development and characterization of novel porous
3D alginate-cockle shell powder nanobiocomposite bone scaffold.
BioMed. Research International 2014: 146723.
Bose,
S., Roy, M. & Bandyopadhyay, A. 2012. Recent advances
in bone tissue engineering scaffolds. Trends in Biotechnology
30(10): 546-554.
Cheung,
H.Y., Lau, K.T., Lu, T.P. & Hui, D. 2007. A critical review
on polymer-based bio-engineered materials for scaffold development.
Composites Part B: Engineering 38(3): 291-300.
Gabrielle,
F., Justin, B. & Abby, M. 2010. Ovalbumin- based porous
scafffolds for bone tissue regeneration. Journal of Tissue
Engineering 2010: 209860.
Golub,
E.E. 2009. Role of matrix vesicles in biomineralization. Biochimica
et Biophysica Acta 1790(12): 1592-1598.
Gurumurthy,
B., Bierdeman, P.C. & Janorkar, A.V. 2016. Composition
of elastin like polypeptide-collagen composite scaffold influences
in vitro osteogenic activity of human adipose derived
stem cells. Dental Materials: Official Publication Of The
Academy Of Dental Materials 32(10): 1270-1280.
Haugh,
M.G., Murphy, C.M., McKiernan, R.C., Altenbuchner, C. &
O’Brien, F.J. 2011. Cross-linking and mechanical properties
significantly influence cell attachment, proliferation, and
migration within collagen glycosaminoglycan scaffolds. Tissue
Engineering: Part A 00(00): 1-8.
Hemabarathy,
B., Zariyantey, A.H., Muhammad, F.M., Nurnadiah, A. &
Enoch, E.K. 2017. Perbandingan antara perancah tulang nanobiokomposit
alginat/kulit kerang dan alginat/kalsium karbonat terhadap
pertumbuhan osteoblas. Jurnal Sains Kesihatan Malaysia
15(2): 1-7.
Hemabarathy,
B., Zuki, A.B.Z., Enoch, K.P., Loqman, M.Y. & Muhajir,
H. 2014. Mineral and physiochemical evaluation of cockle shell
(Anadara granosa) and other selected molluscan shell
as potential biomaterials. Sains Malaysiana 43(7):
1023-1029.
Hoffmann,
B., Seitz, D., Mencke, A., Kokott, A. & Ziegler, G. 2009.
Glutaraldehyde and oxidised dextran as crosslinker reagents
for chitosan-based scaffolds for cartilage tissue engineering.
Journal of Materials Science. Materials in Medicine 20(7):
1495-1503.
Kamba,
A.S. & Zakaria, Z.A.B. 2014. Osteoblasts growth behaviour
on bio-based calcium carbonate aragonite nanocrystal. BioMed
Research International 2014: 215097.
Kohn,
D.H., Sarmadi, M., Helman, J.I. & Krebsbach, P.H. 2000.
Effects of pH on human bone marrow stromal cells in vitro:
Implications for tissue engineering of bone. J. Biomed.
Mater. Res. 60: 292-299.
Lee,
K.Y. & Mooney, D.J. 2012. Alginate: Properties and biomedical
applications. Progress in Polymer Science 37(1): 106-126.
Ma,
L., Mao, Z. & Han, C. 2003. Collagen/chitosan porous scaffolds
with improved biostability for skin tissue engineering. Biomaterials
24(26): 4833-4841.
Mehdi,
K.N., Mehran, S.H. & Mohammad, P. 2006. Fabrication of
porous hydroxyapatite-gelatin scaffolds crosslinked by glutaraldehyde
for bone tissue engineering. Iranian Journal of Biotechnology
4(1): 54-60.
Nurnadiah,
A., Hemabarathy, B., Zariyantey, A.H. & Zulaikha, Z. 2017.
Cytotoxicity and oxidative stress evaluation of alginate/
cockle shell powder nanobiocomposite bone scaffold on osteoblast.
Jurnal Sains Kesihatan Malaysia 15(1): 97-103.
O’Brien,
F.J. 2011. Biomaterials & scaffolds for tissue engineering.
Materials Today 14(3): 88-95.
Perez,
V.P., Romero, A. & Guerrero, A. 2016. Influence of collegen
concentraion and glutaraldehyde on collegen based scaffold
properties. Journal of Biomedical Material Research 104(6):
1462-1468.
Shea,
L.D., Wang, D., Franceschi, R.T. & Mooney, D.J. 2000.
Engineered bone development from a pre-osteoblast cell. Tissue
Engineering 6(6): 605-617.
Sheu,
M.T., Huang, J.C., Yeh, G.C. & Ho, H.O. 2001. Characterization
of collagen gel solutions and collagen matrices for cell culture.
Biomaterials 22(13): 1713-1719.
Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S. & Cheng, L. 2007. Biocompatibility
and osteogenesis of biomimetic nano-hydroxyapatite/polyamide
composite scaffolds for bone tissue engineering. Biomaterials
28: 3338-3348.
Yang,
Y., Alastair, C.R. & Nicole, M.E. 2017. Comparison of
glutaraldehyde and procyanidin cross-linked scaffolds for
soft tissue engineering. Material Sciences and Engineering
C 89: 263-273.
Zhang, Y. & Zhang, M. 2000. Synthesis and characterization of macroporous
chitosan/calcium phosphate composite scaffolds for tissue
engineering. J. Biomed. Mater. Res. 55: 304-312.
Zuki, A.B., Bahaa, F.H. & Noordin, M.M. 2011. Cockle shell-based biocomposite
scaffold for bone tissue engineering. Regenerative
Medicine and Tissue Engineering 11: 365-390.