Sains Malaysiana 47(10)(2018):
2573–2580
http://dx.doi.org/10.17576/jsm-2018-4710-34
Physico-mechanical
Properties of Glass Fibre Reinforced Biophenolic
Elastomer Composite
(Sifat
Fiziko-Mekanikal Gentian Kaca
Biofenolik Elastomer Komposit
Bertetulang)
ZUHAILI ZAKARIA1,
SARANI
ZAKARIA1*,
RASIDI
ROSLAN2,
CHIN
HUA
CHIA1,
SHARIFAH
NABIHAH
SYED
JAAFAR1,
UMAR
ADLI
AMRAN1
& SINYEE GAN1
1Bioresources and Biorefinery Laboratory, Faculty Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Faculty of Industrial
Sciences & Technology, Universiti
Malaysia Pahang, Lebuhraya Tun
Razak, 26300 Gambang Kuantan, Pahang
Darul Makmur,
Malaysia
Received: 1 March 2018/Accepted:
13 June 2018
ABSTRACT
In this study oil palm
empty fruit bunches (EFB) fibers was used to synthesize biophenolic resin (BPR) at a different
formaldehyde/liquefied empty fruit bunches (F/LEFB)
molar ratio which is 1.0, 1.5 and 2.0. The higher molar ratio
of F/LEFB
used has resulted in an increased of viscosity
and solid content of BPR resin. The first decomposition of BPR resin
occured around 86 to 130°C due to
the evaporation of low molecular weight substance which were
water, free phenol and formaldehyde. Glass fiber reinforced
biophenolic composite (BPC)
and glass fiber reinforced biophenolic
elastomer composite (BPEC) was successfully fabricated using BPR resin.
The impact strength and flexural strain of BPEC were
higher than that of BPC. The impact strength of BPEC
1.5 was the highest at 47.71
kJm-2.
However, the flexural strength of BPEC was lower compared with BPC,
which the highest flexural strength was obtained by BPC 1.0
at 65.18 MPa. The cross-sectional image from scanning electron
microscope (SEM)
of BPEC and BPC confirmed the presence of
epoxidized natural rubber (ENR)
improved the compatibility between glass fiber and BPR resin.
Keywords: Epoxidized natural rubber; interlocking; liquefaction; oil
palm empty fruit bunches; prepreg
ABSTRAK
Kajian ini dijalankan
dengan menggunakan
serabut tandan kosong kelapa sawit
(EFB)
bagi menghasilkan
resin biofenolik (BPR) berdasarkan
nisbah molar formaldehid/serabut tandan kosong kelapa sawit
tercecair (F/LEFB) yang berbeza
iaitu 1.0, 1.5 and 2.0. Nisbah molar F/LEFB yang
tinggi telah
menyebabkan kelikatan dan kandungan pepejal
resin BPR meningkat. Penguraian pertama bagi resin BPR
berlaku pada suhu
sekitar 80 sehingga
130°C disebabkan pemeluapan bahan berat molekul
yang rendah seperti
air, formaldehid dan fenol. Komposit berpenguat gentian kaca (BPC)
dan komposit
biofenolik elastomer berpenguat
gentian kaca (BPEC) telah
berjaya dihasilkan
mengguna resin BPR. Kekuatan hentaman
dan terikan
lenturan BPEC adalah
lebih tinggi
berbanding BPC. Namun, kekuatan
lenturan BPEC adalah
lebih rendah
berbanding BPC. Imej
daripada mikroskopi
imbasan elektron (SEM)
bagi keratan rentas
BPEC
dan BPC menunjukkan kehadiran getah asli terepoksida
(ENR)
meningkatkan keserasian
di antara resin BPR dan
gentian kaca.
Kata kunci: Getah
asli terepoksida;
pencecairan; prapreg; saling kunci; serabut
tandan kosong
kelapa sawit
REFERENCES
Abdalla,
M.O., Ludwick, A. & Mitchell, T. 2003. Boron-modified
phenolic resins for high performance applications. Polymer
44(24): 7353-7359.
Ahmadzadeh,
A., Zakaria, S. & Rashid, R.
2009. Liquefaction of oil palm empty fruit bunch (efb)
into phenol and characterization of phenolated
efb resin. Industrial Crops and Products 30(1):
54-58.
Ahmadzadeh,
A., Zakaria, S., Rashid, R. &
Jaafar, S.N.S. 2008. Effect of filler and thermal aging
on the mechanical properties of phenolated
oil palm empty fruit bunch-base composite. Sains
Malaysiana 37(4): 383-387.
Alma,
M.H. & Basturk, M.A. 2006. Liquefaction
of grapevine cane (Vitis
vinisera L.) waste and its application to phenol-formaldehyde
type adhesive. Industrial Crops and Products 24(2):
171-176.
Alma,
M.H., Maldas, D. & Shiraishi,
N. 1998. Liquefaction of several biomass wastes into phenol
in the presence of various alkalis and metallic salts as catalyst.
J. Polym. Eng. 18(3): 161-177.
Alyamac, E.,
Gu, H.,
Soucek, M.D., Qiu,
S. & Buchheit, R.G. 2012. Alkoxysilane
oligomer modified epoxide primers. Progress in Organic
Coatings 74(1): 67-81.
Amran, U.A.,
Zakaria, S., Chia, C.H., Jaafar,
S.N.S. & Roslan, R. 2015. Mechanical
properties and water absorption of glass fibre
reinforced bio-phenolic elastomer (BPE) composite. Industrial
Crops and Products 72: 54-59.
Auad, M.L., Zhao, L., Shen, H., Nutt, S.R. & Sorathia, U. 2007. Flammability properties and mechanical
performance of epoxy modified phenolic foams. Journal
of Applied Polymer Science 104: 1399-1407.
Azahari, N.A.,
Zakaria, S., Kaco,
H., Yee, G.S., Chia, C.H., Jaafar,
S.N.S. & Sajab, M.S. 2017. Regenerated kenaf cellulose membrane from NaOH/urea
aqueous solution by coagulating with sulphuric
acid. Sains Malaysiana
46(5): 795-801.
Chen,
Z., Zeng, W., Chen, Y., Li, W. & Liu, H. 2012. Influence
of F/P on structure and thermal property of phenolic resin.
Key Eng. Mater. 500: 98-103.
Effendi,
A., Gerhauser, H. & Bridgwater,
A.V. 2008. Production of renewable phenolic resins by thermochemical
conversion of biomass: A review. Renewable and Sustainable
Energy Reviews 12(8): 2092-2116.
Gan, S.,
Zakaria, S., Chen, R.S., Chia, C.H.,
Padzil, F.N.M. & Moosavi, S.
2017. Autohydrolysis processing as an alternative to enhance cellulose solubility and
preparation of its regenerated bio-based materials.
Materials Chemistry and Physics 192: 181-189.
Gani,
A. & Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion
characteristics for several types of biomass. Renewable
Energy 32(4): 649-661.
Hamzah,
R., Bakar, M.A., Khairuddean, M.,
Mohammed, I.A. & Adnan, R. 2012. A structural study of
epoxidized natural rubber (ENR-50)
and its cyclic dithiocarbonate derivative using NMR spectroscopy techniques.
Molecules 17(9): 10974-10993.
Haupt,
R.A. & Sellers, T. Jr. 1994. Characterizations of phenol-formaldehyde resol
resins. Industrial & Engineering Chemistry Research
33(3): 693-697.
Hu,
L., Zhou, Y. & Liu, R. 2012. Characterization
and properties of a lignosulfonate-based
phenolic foam. Bioresources
7(1): 554-564.
Kallitsis,
J.K. & Kalfoglou, N.K. 1989. Compatibility of epoxidized natural rubber
with thermoplastic and thermosetting resins. Journal
of Applied Polymer Science 37(2): 453-465.
Kaynak,
C. & Cagatay, O. 2006. Rubber toughening of phenolic resin by using nitrile rubber and amino
silane. Polymer Testing
25(3): 296-305.
Lee,
S.H., Teramoto, Y. & Shiraishi,
N. 2002. Resol-type phenolic resin from liquefied phenolated
wood and its application to phenolic foam. Journal
of Applied Polymer Science 84(3): 468-472.
Lenghaus,
K., Qiao, G.G. & Solomon, D.H.
2001. The
effect of formaldehyde to phenol ratio on the curing and carbonisation behaviour of resole
resins. Polymer 42(8): 3355-3362.
Lin,
L., Yoshioka, M., Yao, Y. & Shiraishi,
N. 1994. Liquefaction of wood in the presence of phenol using phosphoric acid
as a catalyst and the flow properties of the liquefied wood.
Journal of Applied Polymer Science 52(11): 1629-1636.
Ohsawa,
T., Nakayama, A., Miwa, M. & Hasegawa, A. 1978. Temperature dependence of critical fiber length for glass fiber-reinforced
thermosetting resins. Journal of Applied Polymer
Science 22(11): 3203-3212.
Phinyocheep,
P., Phetphaisit, C.W., Derouet,
D., Campistron, I. & Brosse,
J.C. 2005. Chemical degradation of epoxidized
natural rubber using periodic acid: Preparation of epoxidized
liquid natural rubber. Journal of Applied Polymer Science
95(1): 6-15.
Pizzi, A. 2003. Phenolic
resin adhesives. In Handbook
of Adhesive Technology. Second Edition, Revised and Expanded,
edited by Pizzi, A. & Mittal, K.L. Boca Raton: CRC Press.
p. 541.
Pua, F.L.,
Zakaria, S., Chia, C.H., Fan, S.P.,
Rosenau, T., Potthast, A. &
Liebner, F. 2013. Solvolytic liquefaction
of oil palm empty fruit bunch (EFB) fibres:
Analysis of product fractions using FTIR and Pyrolysis-GCMS.
Sains Malaysiana 42(6):
793-799.
Roslan,
R., Zakaria, S., Chia, C.H., Boehm,
R. & Laborie, M.P. 2014. Physico-mechanical properties
of resol phenolic adhesives derived
from liquefaction of oil palm empty fruit bunch fibres.
Industrial Crops and Products 62: 119-124.
Siti Noorul Aina Ab Rahim, Sarani Zakaria., Sharifah Nabihah Syed Jaafar, Chin Hua Chia,
Rasidi Roslan,
Hatika Kaco & Sinyee Gan. 2017. As-spun bio-novolac fiber morphological study based on resin’s physico-chemical properties. Sains
Malaysiana 46(9): 1659-1665.
Sreekala, M.S., George, J., Kumaran,
M.G. & Thomas, S. 2002. The mechanical performance of
hybrid phenol-formaldehyde- based
composites reinforced with glass and oil palm fibres.
Composites Science and Technology 62(3): 339-353.
*Corresponding
author; email: szakaria@ukm.edu.my