Sains Malaysiana 47(12)(2018):
2933–2940
http://dx.doi.org/10.17576/jsm-2018-4712-01
Construction
and Analysis of Protein-Protein Interaction Network to Identify the Molecular
Mechanism in Laryngeal Cancer
(Pembinaan
dan Analisis Jaringan Interaksi Protein-Protein untuk Mengenal
Pasti Mekanisme Molekul Kanser Larinks)
SARAHANI HARUN1 & NURULISA ZULKIFLE2*
1Centre for Bioinformatics Research, Institute
of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Cluster for Oncological &
Radiological Sciences, Advanced Medical & Dental Institute, Universiti
Sains Malaysia, 13200 Bertam, Penang, Malaysia
Received: 30 May 2018/Accepted: 13 September
2018
ABSTRACT
Laryngeal cancer is the most common head and neck cancer in the
world and its incidence is on the rise. However, the molecular mechanism
underlying laryngeal cancer pathogenesis is poorly understood. The goal of this
study was to develop a protein-protein interaction (PPI)
network for laryngeal cancer to predict the biological pathways that underlie
the molecular complexes in the network. Genes involved in laryngeal cancer were
extracted from the OMIM database and their interaction
partners were identified via text and data mining using Agilent Literature
Search, STRING and GeneMANIA. PPI network
was then integrated and visualised using Cytoscape ver3.6.0. Molecular
complexes in the network were predicted by MCODE plugin
and functional enrichment analyses of the molecular complexes were performed
using BiNGO. 28 laryngeal cancer-related genes were present in the OMIM database. The PPI network associated with
laryngeal cancer contained 161 nodes, 661 edges and five molecular complexes.
Some of the complexes were related to the biological behaviour of cancer,
providing the foundation for further understanding of the mechanism of
laryngeal cancer development and progression.
Keywords: Functional enrichment analysis; laryngeal cancer;
protein-protein interaction network; text mining
ABSTRAK
Kanser larinks adalah kanser kepala dan
leher yang paling biasa di dunia dan kejadiannya semakin meningkat. Walau bagaimanapun,
mekanisme molekul yang terlibat dalam patogenesis kanser larinks masih kurang
difahami. Tujuan kajian ini dijalankan adalah untuk
membangunkan jaringan interaksi protein-protein (IPP)
bagi kanser larinks untuk meramal tapak jalan biologi menerusi analisis
kompleks molekul daripada dalam jaringan IPP yang dibina. Gen
yang terlibat dalam kanser larinks telah diekstrak daripada pangkalan data OMIM dan pasangan interaksinya telah dikenal pasti melalui pencarian
teks dan data menggunakan Agilent Literature Search, STRING dan
GeneMANIA. Jaringan IPP kemudiannya digabung dan
divisualisasikan menggunakan Cytoscape ver3.6.0. Kompleks
molekul dalam jaringan diramalkan oleh plugin MCODE dan
analisis pengkayaan berfungsi kompleks molekul dilakukan menggunakan BiNGO. 28 gen berkaitan dengan kanser larinks ditemui dalam pangkalan data OMIM.
Jaringan IPP yang dikaitkan dengan kanser larinks mengandungi 161
nodus, 661 interaksi dan lima kompleks molekul. Beberapa kompleks didapati berkaitan dengan tingkah laku biologi
kanser dan ini telah menyediakan asas untuk memahami lebih lanjut mekanisme
dalam pembangunan dan perkembangan kanser larinks.
Kata
kunci: Analisis pengayaan berfungsi; jaringan interaksi protein-protein; kanser
larinks; pencarian teks
REFERENCES
Bader,
G.D. & Hogue, C.W. 2003. An automated method for
finding molecular complexes in large protein interaction networks. BMC
Bioinformatics 4(1): 2.
Chen, C., Shen, H.,
Zhang, L.G., Liu, J., Cao, X.G., Yao, A.L., Kang, S.S., Gao, W.X., Han, H.,
Cao, F.H. & Li, Z.G. 2016. Construction and analysis of protein-protein
interaction networks based on proteomics data of prostate cancer. International
Journal of Molecular Medicine 37(6): 1576- 1586.
Coskunpinar,
E., Oltulu, Y.M., Orhan, K.S., Tiryakioglu, N.O., Kanliada, D. & Akbas, F.
2014. Identification of a differential expression signature associated with
tumorigenesis and metastasis of laryngeal carcinoma. Gene 534(2):
183-188.
Engin,
H.B., Guney, E., Keskin, O., Oliva, B. & Gursoy, A. 2013. Integrating structure
to protein-protein interaction networks that drive metastasis to brain and lung
in breast cancer. PLoS ONE 8(11): e81035.
Erkul,
E., Kucukodaci, Z., Pinar, D., Gungor, A., Alparslan Babayigit, M., Kurt, O.
& Cincik, H. 2016. TRAIL and TRAIL receptors in patients with laryngeal
cancer. Head & Neck 38: 535-541.
Ferlay,
J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin,
D.M., Forman, D. & Bray, F. 2015. Cancer incidence and mortality worldwide:
Sources, methods and major patterns in GLOBOCAN 2012. International Journal
of Cancer 136(5): 359-386.
Gogvadze,
V., Orrenius, S. & Zhivotovsky, B. 2006. Multiple pathways of
cytochrome c release from mitochondria in apoptosis. Biochimica et Biophysica Acta - Bioenergetics 1757(5-6): 639-647.
Harfe, B.D. &
Jinks-Robertson, S. 2000. DNA mismatch repair and
genetic instability. Annual Review of Genetics 34(1): 359-399.
Ideker,
T. & Sharan, R. 2008. Protein networks in disease. Genome Research 18(4): 644-652.
Jeřábková, B.,
Marek, J., Bučková, H., Kopečková, L., Veselý, K.,
Valíčková, J., Fajkus, J. & Fajkusová, L. 2010. Keratin mutations in
patients with epidermolysis bullosa simplex: Correlations between phenotype
severity and disturbance of intermediate filament molecular structure. British
Journal of Dermatology 162(5): 1004-1013.
Kunkel, T.A. & Erie,
D.A. 2005. DNA mismatch repair. Annual Review of Biochemistry 74(1):
681-710.
Maere,
S., Heymans, K. & Kuiper, M. 2005. BiNGO: A Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16): 3448-3449.
Mehrotra, R. &
Yadav, S. 2006. Oral squamous cell carcinoma: Etiology, pathogenesis and
prognostic value of genomic alterations. Indian Journal of Cancer 43(2):
60-66.
Mohamed-Hussein, Z.A.
& Harun, S. 2009. Construction of a polycystic ovarian syndrome (PCOS)
pathway based on the interactions of PCOS-related proteins retrieved from
bibliomic data. Theoretical Biology and Medical Modelling 6(18): 1-7.
Sasiadek,
M.M., Smigiel, R., Stembalska, A., Ramsey, D. & Blin, N. 2006. Cyclin D1 and MLH1
levels in laryngeal cancer are linked to chromosomal imbalance. Anticancer
Research 26(6 B): 4597-4601.
Schabath, M.B.,
Giuliano, A.R., Thompson, Z.J., Amankwah, E.K., Gray, J.E., Fenstermacher,
D.A., Jonathan, K.A., Beg, A.A. & Haura, E.B. 2013. TNFRSF10B polymorphisms
and haplotypes associated with increased risk of death in non-small cell lung
cancer. Carcinogenesis 34(11): 2525-2530.
Shannon, P., Markiel,
A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B.
& Ideker, T. 2003. Cytoscape: A software environment for integrated models
of biomolecular interaction networks. Genome Research 13(11): 2498-2504.
Siegel, R.L., Miller,
K.D. & Jemal, A. 2017. Cancer statistics. 2017. CA Cancer J. Clin. 67(1):
7-30.
Szklarczyk,
D., Morris, J.H., Cook, H., Kuhn, M., Wyder, S., Simonovic, M., Santos, A.,
Doncheva, N.T., Roth, A., Bork, P., Jensen, L.J. & von Mering, C. 2017. The STRING database in
2017: Quality-controlled protein-protein association networks, made broadly
accessible. Nucleic Acids Research 45: D362-D368.
Tahir, R.A., Sehgal,
S.A., Khattak, N.A., Khan Khattak, J.Z. & Mir, A. 2013. Tumor necrosis
factor receptor superfamily 10B (TNFRSF10B): An insight from structure modeling
to virtual screening for designing drug against head and neck cancer. Theoretical
Biology and Medical Modelling 10(1): 1.
Verim, A., Turan, S.,
Farooqi, A.A., Kahraman, O.T., Tepe- Karaca, C., Yildiz, Y., Naiboglu, B.,
Ozkan, N.E., Ergen, A., Isitmangil, G.A. & Yaylim, I. 2014. Association
between laryngeal squamous cell carcinoma and polymorphisms in tumor necrosis
factor related apoptosis induce ligand (TRAIL), TRAIL receptor and sTRAIL
levels. Asian Pacific Journal of Cancer Prevention 15(24): 10697-10703.
Vyas,
R., Bapat, S., Jain, E., Karthikeyan, M., Tambe, S. & Kulkarni, B.D. 2016. Building and analysis
of protein-protein interactions related to diabetes mellitus using support
vector machine, biomedical text mining and network analysis. Computational
Biology and Chemistry 65: 37-44.
Wei,
M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J.,
Roth, K.A., MacGregor, G.R., Thompson, C.B. & Korsmeyer, S.J. 2001. Proapoptotic BAX and
BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292(5517):
727-730.
Wu,
C.H., Hsu, C.L., Lu, P.C., Lin, W.C., Juan, H.F. & Huang, H.C. 2016. Identification of
lncRNA functions in lung cancer based on associated protein-protein interaction
modules. Scientific Reports 6(1): 35939.
Yoldas,
B., Ozer, C., Ozen, O., Canpolat, T., Dogan, I., Griffith, T.S., Sanlioglu, S.
& Ozluoglu, L.N. 2011. Clinical significance of
TRAIL and TRAIL receptors in patients with head and neck cancer. Head
& Neck 33(9): 1278-1284.
Yu,
H., Kim, P.M., Sprecher, E., Trifonov, V. & Gerstein, M. 2007. The importance of
bottlenecks in protein networks: Correlation with gene essentiality and
expression dynamics. PLoS Computational Biology 3(4): e59.
Zhang, Y., Chen, Y., Yu,
J., Liu, G. & Huang, Z. 2014. Integrated transcriptome analysis reveals
miRNA-mRNA crosstalk in laryngeal squamous cell carcinoma. Genomics 104(4):
249-256.
Zuberi, K., Franz, M.,
Rodriguez, H., Montojo, J., Lopes, C.T., Bader, G.D. & Morris, Q. 2013. GeneMANIA prediction
server 2013 update. Nucleic Acids Research 41: 115-122.
*Corresponding author; email: nurulisa@usm.my