Sains Malaysiana 47(12)(2018): 2969–2974

http://dx.doi.org/10.17576/jsm-2018-4712-05

 

Rapid Assembly of Yeast Expression Cassettes for Phenylpropanoid Biosynthesis in Saccharomyces cerevisiae

(Pemasangan Pantas Gen Kaset Yis untuk Penghasilan Fenilpropanoid dalam Saccharomyces cerevisiae)

 

AHMAD BAZLI RAMZI*, KU NURUL AQMAR KU BAHAUDIN, SYARUL NATAQAIN BAHARUM, MUHAMMAD LUTFI CHE ME, HOE-HAN GOH, MAIZOM HASSAN & NORMAH MOHD NOOR

 

Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 30 May 2018/Accepted: 18 September 2018

 

ABSTRACT

Microbial production of natural products using metabolic engineering and synthetic biology approaches often involves the assembly of multiple gene fragments including regulatory elements, especially when using eukaryotes as hosts. Traditional cloning strategy using restriction enzyme digestion and ligation are laborious and inflexible owing to the high number of sequential cloning steps, limited cutting sites and generation of undesired 'scar' sequences. In this study, a homology-based isothermal DNA assembly method was carried out for one-step simultaneous assembly of multiple DNA fragments to engineer plant phenylpropanoid biosynthesis in Saccharomyces cerevisiae. Rapid construction of yeast plasmid harboring dual gene expression cassettes was achieved via isothermal assembly of four DNA fragments designed with 20 bp overlapping sequences. The rate-limiting enzyme of phenylpropanoid pathway, cinnamate 4-hydroxylase encoded by C4H gene from Polygonum minus was cloned in tandem with yeast promoter and terminator elements of S. cerevisiae for efficient construction of phenylpropanoid biosynthetic pathway in recombinant yeast. The assembled pAG-CAT (C4H-ADH1t-TEF1p) shuttle plasmid and transformation of S. cerevisiae with the plant C4H gene were confirmed via PCR analysis. Based on these findings, the yeast shuttle plasmid harboring P. minus phenylpropanoid biosynthesis gene was efficiently constructed to be the starting platform for the production of plant natural products in genetically-engineered S. cerevisiae.

 

Keywords: Phenylpropanoid biosynthesis; Polygonum minus; rapid DNA assembly; Saccharomyces cerevisiae; synthetic biology

 

ABSTRAK

Penghasilan produk semula jadi oleh mikrob melalui kaedah kejuruteraan metabolik dan biologi sintetik sering melibatkan pemasangan serpihan gen berganda termasuk elemen gen pengawalselia yang penting untuk sistem eukariot. Pengklonan gen secara tradisi menggunakan enzim pemotongan dan penyambungan DNA adalah sukar dan tidak fleksibel kerana bergantung kepada langkah pengklonan berjujukan yang sangat banyak, ketidaksesuaian tapak pemotongan dan penghasilan jujukan ‘parut’ yang tidak dikehendaki. Kajian ini melaporkan pemasangan berbilang fragmen DNA berganda secara serentak dan dalam satu langkah melalui kaedah pemasangan DNA isoterma untuk penghasilan fenilpropanoid dalam yis Saccharomyces cerevisiae. Pembinaan plasmid konstruk yis telah berjaya dilakukan dengan pantas melalui kaedah pemasangan isoterma empat fragmen DNA yang telah direka untuk mengandungi jujukan bertindih sebanyak 20 pasangan bes. Enzim sinamat 4-hidrolase (C4H) daripada Polygonum minus yang merupakan enzim pengehad kadar fenilpropanoid, telah dipasang bersama elemen penggalak dan penamat yis untuk pembinaan laluan fenilpropanoid dalam S. cerevisiae rekombinan secara cekap dan pantas. Hasil pemasangan plasmid lengkap pAG-CAT (C4H-ADH1t-TEF1p) dan transformasi gen C4H dalam S. cerevisiae telah disahkan melalui analisis tindak balas rantai polimerase (PCR). Berdasarkan hasil kajian ini, plasmid ulang-alik yis yang mengandungi gen biosintetik fenilpropanoid daripada P. minus telah berjaya dibina dengan cekap dan akan dijadikan sebagai landasan pemula untuk penghasilan produk semula jadi menggunakan S. cerevisiae yang terubah suai secara genetik.

 

Kata kunci: Biologi sintetik; biosintesis fenilpropanoid; pemasangan DNA pantas; Polygonum minus; Saccharomyces cerevisiae

REFERENCES

Ahmad, R., Baharum, S.N., Bunawan, H., Lee, M., Mohd Noor, N., Rohani, E.R., Ilias, N. & Zin, N.M. 2014. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities. Molecules 19(11): 19220-19242.

Alberti, S., Gitler, A.D. & Lindquist, S. 2007. A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 24(10): 913-919.

Blount, B.A., Weenink, T. & Ellis, T. 2012. Construction of synthetic regulatory networks in yeast. FEBS Letters 586(15): 2112-2121.

Busso, D., Peleg, Y., Heidebrecht, T., Romier, C., Jacobovitch, Y., Dantes, A., Salim, L., Troesch, E., Schuetz, A., Heinemann, U., Folkers, G.E., Geerlof, A., Wilmanns, M., Polewacz, A., Quedenau, C., Büssow, K., Adamson, R., Blagova, E., Walton, J., Cartwright, J.L., Bird, L.E., Owens, R.J., Berrow, N.S., Wilson, K.S., Sussman, J.L., Perrakis, A. & Celie, P.H. 2011. Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. Journal of Structural Biology 175(2): 159-170.

Chen, C. 2016. Superior cloning performance with SGI-DNA gibson assembly® kits. Biotechniques 60(3): 151-152.

Cohen, S.N., Chang, A.C.Y., Boyer, H.W. & Helling, R.B. 1973. Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences 70(11): 3240-3244.

Festa, F., Steel, J., Bian, X. & Labaer, J. 2013. High-throughput cloning and expression library creation for functional proteomics. Proteomics 13(9): 1381-1399.

Galanie, S., Thodey, K., Trenchard, I.J., Filsinger Interrante, M. & Smolke, C.D. 2015. Complete biosynthesis of opioids in yeast. Science 349(6252): 1095-1100.

Hartley, J.L., Temple, G.F. & Brasch, M.A. 2000. DNA cloning using in vitro site-specific recombination. Genome Research 10(11): 1788-1795.

Hawkins, K.M. & Smolke, C.D. 2008. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology 4(9): 564-573.

Jiang, H., Wood, K.V. & Morgan, J.A. 2005. Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae. Applied Environmental Microbiology 71(6): 2962-2969.

Koopman, F., Beekwilder, J., Crimi, B., van Houwelingen, A., Hall, R.D., Bosch, D., van Maris, A.J., Pronk, J.T. & Daran, J.M. 2012. de novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories 11(1): 155.

Leonard, E. & Koffas, M.A.G. 2007. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Applied Environmental Microbiology 73(22): 7246-7251.

Liu, L., Redden, H. & Alper, H.S. 2013. Frontiers of yeast metabolic engineering: Diversifying beyond ethanol and Saccharomyces. Curr. Opin. Biotechnol. 24(6): 1023-1030.

Loke, K.K., Rahnamaie-Tajadod, R., Yeoh, C.C., Goh, H.H., Mohamed-Hussein, Z.A., Zainal, Z., Ismail, I. & Mohd Noor, N. 2017. Transcriptome analysis of Polygonum minus reveals candidate genes involved in important secondary metabolic pathways of phenylpropanoids and flavonoids. PeerJ 5: e2938.

Loke, K.K., Rahnamaie-Tajadod, R., Yeoh, C.C., Goh, H.H., Mohamed-Hussein, Z.A., Mohd Noor, N., Zainal, Z. & Ismail, I. 2016. RNA-seq analysis for secondary metabolite pathway gene discovery in Polygonum minus. Genomics Data 7: 12-13.

Luo, Y., Enghiad, B. & Zhao, H. 2016. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters. Natural Products Reports 33(2): 174-182.

Ramzi, A.B., Hyeon, J.E. & Han, S.O. 2015. Improved catalytic activities of a dye-decolorizing peroxidase (DyP) by overexpression of ALA and heme biosynthesis genes in Escherichia coli. Process Biochemistry 50(8): 1272-1276.

Sambrook, J., Fritsch, E.F. & Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring: Harbor Laboratory Press.

Sherman, F. 1991. Getting started with yeast. Methods in Enzymology 194: 3-21.

Siddiqui, M.S., Thodey, K., Trenchard, I. & Smolke, C.D. 2012. Advancing secondary metabolite biosynthesis in yeast with yeast synthetic biology tools. FEMS Yeast Research 12(2): 144-170.

Smanski, M.J., Zhou, H., Claesen, J., Shen, B., Fischbach, M.A. & Voigt, C.A. 2016. Synthetic biology to access and expand nature's chemical diversity. Nature Reviews Microbiology 14(3): 135-149.

Stephanopoulos, G. 2012. Synthetic biology and metabolic engineering. ACS Synthetic Biology 1(11): 514-525.

Trantas, E., Panopoulos, N. & Ververidis, F. 2009. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering 11(6): 355-366.

Vickers, C.E., Bydder, S.F., Zhou, Y. & Nielsen, L.K. 2013. Dual gene expression cassette vectors with antibiotic selection markers for engineering in Saccharomyces cerevisiae. Microbial Cell Factories 12(1): 96.

Wang, T., Ma, X., Zhu, H., Li, A., Du, G. & Chen, J. 2012. Available methods for assembling expression cassettes for synthetic biology. Applied Microbiology and Biotechnology 93(5): 1853-1863.

Yan, Y., Kohli, A. & Koffas, M.A.G. 2005. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Applied Environmental Microbiology 71(9): 5610-5613.

 

*Corresponding author; email: bazliramzi@ukm.edu.my

 

 

 

 

 

 

previous