Sains Malaysiana 47(12)(2018): 3017–3023
http://dx.doi.org/10.17576/jsm-2018-4712-11
Aryl Diazonium Modification for Improved Graphite
Fibre Brush in Microbial Fuel Cell
(Pengubahsuaian Aril Diazonium bagi Berus Gentian
Grafit yang Lebih Baik dalam Sel Bahan Bakar Mikrob)
SITI FARAH
NADIAH
RUSLI1,
MIMI
HANI
ABU
BAKAR1*,
SERATUL
JEMIAH
ABDUL
RANI2,
LOH
KEE
SHYUAN1
& MOHD SHAHBUDIN MASTAR1,3
1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Faculty of Engineering and Build Environment, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 30 May 2018 /Accepted: 18 September 2018
ABSTRACT
Aryl diazonium salts are coupling agents
that assist in molecules attachment to interfaces for sensing purposes.
Despite not being fully explored and not yet widely applicable for
cell-based sensors, the high stability of aryl diazonium salt formed
sensing system is highly favorable in biological applications. Carbon-based
electrodes are the most commonly used in aryl diazonium modification
due to its post grafting stable C-C bond formation. Here, salt bridge
based microbial fuel cells (MFCs)
were used to study on the effect of aryl diazonium modification
on the anode graphite fibre brush. Aryl diazonium salts were in situ generated
by the diazonation of p-phenylenediamine with NaNO2 in
HCl solution. The electrochemical performance of the aryl diazonium
modified graphite brush MFC was measured and compared with the
unmodified graphite brush MFC. The power output of the modified
graphite brush bioanode was higher (8.33 W/m3) than
the unmodified graphite brush (7.60 W/m3) after
20 days of operation with ferricyanide as the catholyte. After 70
days of operation using phosphate buffer solution as the catholyte,
the Pmax
of modified brush was three times higher (0.06 W/m3) than
of the unmodified brush (0.02 W/m3), which indicates an enhanced
binding towards the substrate that facilitates a better electron
transfer between the microbial and electrode surface.
Keywords: Aryl diazonium salt; graphite
fibre brush modification; microbial fuel cell
ABSTRAK
Garam aril diazonium adalah agen
gandingan yang membantu dalam pelekatan molekul pada antara muka untuk tujuan
penderiaan. Walaupun tidak diterokai sepenuhnya dan belum digunakan secara
meluas untuk sensor berasaskan sel, kestabilan tinggi garam aril diazonium yang
terbentuk adalah sistem sensor yang sangat baik dalam aplikasi biologi.
Elektrod berasaskan karbon adalah yang paling biasa digunakan dalam
pengubahsuaian aril diazonium kerana pembentukan ikatan C-C yang stabil di
akhir cantuman. Di sini, jambatan garam berasaskan sel bahan bakar mikrob (MFC)
digunakan untuk mengkaji kesan pengubahsuaian aril diazonium pada berus gentian
anod grafit. Garam aril diazonium dihasilkan secara in situ oleh
pengasingan p-fenilenediamina dengan NaNO2 dalam larutan HCl. Prestasi elektrokimia
berus grafit diubah suai aril diazonium diukur dan dibandingkan dengan berus
grafit MFC yang tidak diubah suai. Hasil kuasa bioanod berus
grafit yang diubah suai lebih tinggi (8.33 W/m3)
daripada berus grafit yang tidak diubah suai (7.60 W/m3)
selepas 20 hari beroperasi dengan ferrisianida sebagai katolit. Selepas 70 hari
operasi menggunakan larutan fosfat sebagai katolit, Pmax berus
yang diubah suai adalah tiga kali lebih tinggi (0.06 W/m3)
daripada berus yang tidak diubah suai (0.02 W/m3).
Keputusan ini menunjukkan pengubahsuaian memberi ikatan lebih baik ke arah
substrat, sekaligus memudahkan pemindahan elektron yang lebih baik antara
permukaan mikrob dan elektrod.
Kata
kunci: Berus gentian anod grafit; garam aril diazonium; sel bahan bakar mikrob
REFERENCES
Abu Bakar, M.H., Pasco, N.F., Gooneratne,
R. & Kim, B.H. 2016. Cellobiose dehydrogenase/epoxy- graphite composite
with aryl diazonium reduction for lactose detection. Jurnal Teknologi 3:
97-105.
Brownson, D.A.C. & Banks, C.E. 2014. The
Handbook of Graphene Electrochemistry. London: Springer-Verlag.
Dumas, C., Basseguy, R. & Bergel, A.
2008. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on
stainless steel cathodes. Electrochimica Acta 53(5): 2494- 2500.
Guo, K., Chen, X., Freguia, S. &
Donose, B.C. 2013a. Spontaneous modification of carbon surface with neutral red
from its diazonium salts for bioelectrochemical systems. Biosensors and
Bioelectronics 47: 184-189.
Guo, K., Freguia, S., Dennis, P.G., Chen,
X., Donose, B.C., Keller, J., Gooding, J.J. & Rabaey, K. 2013b. Effects of
surface charge and hydrophobicity on anodic biofilm formation, community
composition and current generation in bioelectrochemical systems. Environmental
Science and Technology 47(13): 7563-7570.
Lanas, V. & Logan, B.E. 2013.
Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource
Technology 148: 379-385.
Li, W.W., Sheng, G.P., Liu, X.W. &
Yu, H.Q. 2011. Recent advances in the separators for microbial fuel cells. Bioresource
Technology 102(1): 244-252.
Liu, G., Chockalingham, M., Khor, S.M.,
Gui, A.L. & Justin Gooding, J. 2010. A comparative study of the
modification of gold and glassy carbon surfaces with mixed layers of in situ generated aryl diazonium compounds. Electroanalysis 22(9): 918-926.
Logan, B., Cheng, S., Watson, V. &
Estadt, G. 2007. Graphite fiber brush anodes for increased power production in
air-cathode microbial fuel cells. Environmental Science and Technology 41(9):
3341-3346.
Logan, B.E., Rabaey, K., Hamelers, B.,
Aelterman, P., Freguia, S. & Verstraete, W. 2006. Critical review microbial
fuel cells: Methodology and technology. Environmental Science &
Technology 40(17): 5181-5192.
Picot, M., Lapinsonnière, L., Rothballer,
M. & Barrière, F. 2011. Graphite anode surface modification with controlled
reduction of specific aryl diazonium salts for improved microbial fuel cells
power output. Biosensors and Bioelectronics 28(1): 181-188.
Pinson, J. 2012. Attachment of organic
layers to materials surfaces by reduction of diazonium salts. In Aryl
Diazonium Salts: New Coupling Agents in Polymer and Surface Science, edited
by Chehimi, M.M. Germany: Wiley. VCH Verlag GmbH & Co. pp. 1-35.
Song, H., Zhu, Y., Li, J., Zhu, Y. &
Li, J. 2015. Electron transfer mechanisms, characteristics and applications of
biological cathode microbial fuel cells - A mini review. Arabian Journal of
Chemistry https://doi.org/10.1016/j.arabjc.2015.01.008.
Song, T.S. & Jiang, H.L. 2011.
Effects of sediment pretreatment on the performance of sediment microbial fuel
cells. Bioresource Technology 102(22): 10465-10470.
Sun, J., Bi, Z., Hou, B., Cao, Y.Q. &
Hu, Y.Y. 2011. Further treatment of decolorization liquid of azo dye coupled
with increased power production using microbial fuel cell equipped with an
aerobic biocathode. Water Research 45(1): 283-291.
Tasca, F., Harreither, W., Ludwig, R.,
Gooding, J.J. & Gorton, L. 2011. Cellobiose dehydrogenase aryl diazoniunn
modified single walled carbon nanotubes: Enhanced direct electron transfer
through a positively charged surface. Analytical Chemistry 83(8):
3042-3049.
Wei, J., Liang, P. & Huang, X. 2011.
Recent progress in electrodes for microbial fuel cells. Bioresource
Technology 102(20): 9335-9344.
Zhang, G.D., Zhao, Q.L., Jiao, Y., Zhang,
J.N., Jiang, J.Q., Ren, N. & Kim, B.H. 2011. Improved performance of
microbial fuel cell using combination biocathode of graphite fiber brush and
graphite granules. Journal of Power Sources 196(15): 6036-6041.
Zhuang, L., Yuan, Y., Yang, G. &
Zhou, S. 2012. In situ formation of graphene/biofilm composites for
enhanced oxygen reduction in biocathode microbial fuel cells. Electrochemistry
Communications 21: 69-72.
*Corresponding author; email: mimihani@ukm.edu.my
|